
Improving Inquiry-Driven Modeling in Science Educat ion 
through Interaction with Intelligent Tutoring Agent s 

David A. Joyner 
Design & Intelligence Lab. 

Georgia Institute of Technology 
85 5th Street NW 

Atlanta, GA 30332 
david.joyner@gatech.edu 

Ashok K. Goel 
Design & Intelligence Lab. 

Georgia Institute of Technology 
85 5th Street NW 

Atlanta, GA 30332 
goel@cc.gatech.edu 

 
ABSTRACT 
This paper presents the design and evaluation of a set of 
intelligent tutoring agents constructed to teach teams of 
students an authentic process of inquiry-driven modeling. 
The paper first presents the theoretical grounding for 
inquiry-driven modeling as both a teaching strategy and a 
learning goal, and then presents the need for guided 
instruction to improve learning of this skill. However, 
guided instruction is difficulty to provide in a one-to-many 
classroom environment, and thus, this paper makes the case 
that interaction with a metacognitive tutoring system can 
help students acquire the skill. The paper then describes the 
design of an exploratory learning environment, the 
Modeling and Inquiry Learning Application (MILA), and 
an accompanying set of metacognitive tutors (MILA–T). 
These tools were used in a controlled experiment with 84 
teams (237 total students) in which some teams received 
and interacted with the tutoring system while other teams 
did not. The effect of this experiment on teams' 
demonstration of inquiry-driven modeling are presented. 
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INTRODUCTION 
Constructionism has been one of the dominant theories of 
modern instructional design for several decades. 
Originating from the theories of Jean Piaget [38] and 
Seymour Papert [37], constructionist learning approaches 

advocate learning in open-ended environments where the 
learner plays a significant role in driving the learning goals 
and outcomes. Constructionist learning approaches come in 
various forms, such as discovery-based learning [19], 
problem-based learning [14], project-based learning [5], 
experiential learning [29], and inquiry-based learning [13]. 

An inquiry-oriented approach to science education has two 
valuable effects. First, the literature on discovery-based 
learning points to improvements to student engagement and 
learning through participation with such a pedagogical 
approach [42, 46, 48]. Second, inquiry and discovery are 
valuable in and of themselves because they are authentic 
representations of participation in real scientific research. 
One goal of early science education is to stoke students' 
mastery of science and interest in science careers [43]; 
toward this end, participation in an authentic exercise is a 
valuable learning experience on its own [21].  

However, these constructionist learning approaches are not 
without valid criticisms. Kirchner, Sweller, & Clark argue, 
from both theoretical and empirical viewpoints, that purely 
unguided or minimally-guided instructional approaches are 
insufficient [27]. Rather, they suggest that guided 
instruction is critical early in the learning process. Guided 
instruction, they argue, provides the learner with the 
foundational knowledge and skills necessary to begin to 
drive their own discovery and learning. Other studies have 
similarly corroborated the weakness of discovery-oriented 
approaches in certain settings and domains [28, 32].  

The work presented here addresses this need for guided 
instruction in the context of scientific inquiry, modeling, 
and discovery. The objective of this research is to teach 
students the metacognitive process of inquiry-driven 
modeling through interaction with a set of intelligent agents 
embedded in a software environment. We have developed a 
series of exploratory learning environments that enable 
students to investigate complex ecological phenomena [23, 
50] which leverage inquiry-driven teaching. Students 
demonstrated significant improvement in deep 
understanding after using these environments [17], but we 
also observed the kinds of weaknesses noted above. 
Learners often exhibited subpar investigative processes, and 
while their deep understanding of the systems improved, 
the actual process of inquiry and modeling did not. 

Paste the appropriate copyright/license statement here. ACM now supports 
three different publication options: 

·  ACM copyright: ACM holds the copyright on the work. This is the 
historical approach. 

·  License: The author(s) retain copyright, but ACM receives an 
exclusive publication license. 

·  Open Access: The author(s) wish to pay for the work to be open 
access. The additional fee must be paid to ACM. 

This text field is large enough to hold the appropriate release statement 
assuming it is single-spaced in TimesNewRoman 8 point font.  Please do 
not change or modify the size of this text box. 



Informed by these experiences, we have augmented our 
most recent exploratory learning environment, the 
Modeling & Inquiry Learning Application (MILA), with an 
extension to provide guided instruction directly in the 
context of a modeling and inquiry activity. This extension, 
MILA–Tutoring (MILA–T), supplies five distinct 
intelligent agents, each mimicking a particular functional 
role that a teacher traditionally plays in a classroom. In this 
paper, we first present the design of five pedagogical 
agents, the ways in which they track student behavior over 
time, the feedback that they provide, and the way in which 
they interact with teams during the inquiry-driven modeling 
process. We then present the design and results of an 
experiment with 238 middle school science students 
working in groups of two or three to investigate and 
construct a model of an ecological phenomenon. We 
present the differences in behavior seen based on 
interaction with the tutoring system and deeper analysis of 
the role that these tutoring agents played in the inquiry-
driven modeling process. 

RELATED WORK 
This research builds on prior research in a variety of 
communities, including intelligent tutoring systems, 
exploratory learning environments, artificial intelligent in 
education, intelligent user interfaces, and learning sciences. 
Most prominently, however, this work represents the union 
of two communities: modeling and inquiry in science 
education and metacognitive tutoring. 

Modeling and Inquiry in Education 
Significant attention has been devoted to developing 
approaches to science education that encourage 
participation in authentic scientific practice. This kind of 
teaching strategy leverages the appeal of constructionist 
learning approaches described previously as well as 
exposes students to the authentic way in which science is 
performed in the real world. Such directions have been 
encouraged by both policy makers  [33] and researchers  
[12, 30, 42]. Generally speaking, scientific models are 
representations of the system and are used to make 
predictions about the system for further analysis [34]. 
Models come in many different forms, including 
descriptive, prescriptive, conceptual, simulative, causal, 
dynamic, mechanistic, explanatory, visual, and more [8, 
18]. For this research, we focus on models that are 
explanatory and mechanistic [17]. 

Scientific inquiry is tightly connected with scientific 
modeling. Inquiry is the process by which scientists or 
learners examine the domain or phenomenon that they are 
investigating, find useful observations or data, and use that 
data to test and expand their understanding of the system 
[43]. A scientific model, in this sense, serves as the 
destination for newly-unveiled data, as well as an 
organizing tool for determining future areas of inquiry [34]. 
Scientists use models to make predictions for what 
observations they would expect if the model is accurate; 

they then gather that data as part of the inquiry process and 
use it to corroborate the model's predictive power or 
elaborate on the model's mechanistic explanations [52]. 

Educational approaches that unite modeling and inquiry 
have been used extensively in science education [24, 43, 
52]. However, these discovery-based approaches are subject 
to the same challenges noted previously [27, 28, 32]. 
Implementing guided instruction in these types of 
interventions presents a pragmatic difficulty: it is difficult 
for a single teacher to monitor and guide the open-ended 
inquiry and discovery of multiple students or groups of 
students at once. This difficulty is exacerbated in inquiry 
and modeling by the more general difficulties with teaching 
metacognitive skills, which have previously been identified 
by the metacognitive tutoring community. 

Metacognitive Tutoring 
Metacognitive tutoring is an extension of cognitive or 
intelligent tutoring. Whereas intelligent tutoring systems 
typically address cognitive skills [e.g. 49, 53], 
metacognitive tutoring initiatives attempt to construct 
intelligent agents that teach students metacognitive skills 
like self-regulated learning [2], self-explanation [9] and 
help-seeking [1]. These kinds of metacognitive skills have 
been identified as one of the most crucial learning goals of 
early education [3, 6, 11]. However, teaching metacognition 
has a number of unique challenges. Roll et al. 2007 
provides an overview of many of these unique challenges 
[40]. Metacognitive skills tend to be domain-independent, 
but must be taught within a specific domain. Students have 
a natural tendency to emphasize the domain-specific 
learning rather than the metacognitive skills. Metacognitive 
skills are also difficult to teach explicitly. Because 
metacognition occurs within the mind of the reasoner, there 
is no inherent externally observable behavior or skill from 
which to learn. In the following section, the nature of 
inquiry and modeling as metacognitive skills is presented; 
however, we may also see the connection between inquiry, 
modeling, and metacognition by the shared difficulties both 
present. Like other metacognitive skills, inquiry and 
modeling are difficult to teach because they exist largely in 
the mind of the learner or scientist and because there is a 
tendency to focus on the domain knowledge rather than the 
metacognitive skill. 

INQUIRY-DRIVEN MODELING 
This research aims to teach students the process of inquiry-
driven modeling within an authentic activity in ecological 
investigation. We define 'inquiry-driven modeling' as a 
particular type of the modeling and inquiry process in 
which the modeling process is driven by the results and data 
uncovered during inquiry activities; in turn, the resultant 
model helps structure and direct the continued inquiry 
activities. Other initiatives have taught inquiry [26, 48] and 
modeling [4, 47] separately, but this work teaches them 
together as directed by the literature on inquiry and 
modeling in authentic scientific research [34]. 



The case for inquiry-driven modeling as a metacognitive 
skill is derived from three connections. First, inquiry-driven 
modeling meets the definition of a metacognitive skill. 
Metacognition, as defined by Weinert 1987, is "cognition 
about cognition; that is, it refers to second-order cognitions: 
thoughts about thoughts, knowledge about knowledge or 
reflections about actions"  [51]. The target of an inquiry-
driven modeling task is one's own knowledge or 
understanding, aligning with the definition of a 
metacognitive skill. Second, inquiry-driven modeling is in 
many ways a local instantiation of the broader self-
regulated learning process. Inquiry-driven modeling takes 
the general principles of self-regulated learning [2, 7, 11, 
36], such as planning, self-monitoring, strategizing, and 
self-assessment, and deploys them in a particular domain 
with an additional set of rules, standards, and practices. 
Third, prior research has articulated the nature of inquiry 
and modeling as metacognitive skills. Most notably, White 
& Frederiksen explored this issue by initially using 
metacognition as a way of creating educational 
interventions grounded in inquiry and modeling [41, 52]. 
This work develops the idea of "metamodeling" knowledge, 

which is an understanding not simply of the process of 
modeling, but also to the role, function, and need for 
modeling in scientific inquiry. Metacognitive tutoring has 
also been applied previously to the inquiry phase of the 
process [16]. 

Process of Inquiry-Driven Modeling 
The objective of this research is to teach students the 
metacognitive process of inquiry-driven modeling. In order 
to do so, we must first articulate a desirable process of 
inquiry-driven modeling. Based on significant existing 
research on inquiry and modeling in both education [39, 43, 
44, 52] and science [10, 34], and supported by our own 
experience with inquiry and modeling in our exploratory 
learning environments in the past [17, 23, 50], we have 
developed a model of the process of inquiry-driven 
modeling, as shown in Figure 1. In this process, the learner 
(whether a student learning about ecology in a classroom or 
a scientist learning about the world in an authentic research 
setting) starts off by observing and describing some 
phenomenon to investigate. They then propose one or more 
hypotheses that could explain this phenomenon (although 
some researchers suggest scientists gather information 

 

Figure 1: A model of a desirable process of inquiry-driven modeling. 



before developing hypotheses [35], which is also supported 
by this model). These hypotheses then become preliminary 
models of the phenomenon. Using these models, the learner 
determines what is needed to confirm or expand the model. 
This leads to information-gathering in the world, which 
brings new information back to the model. Based on this 
new information, the model is altered, either dismissing it if 
the new information contradicts the model, expanding it if 
the new information provides mechanistic information, or 
strengthening it if the new information confirms predictions 
that the model had previously made. This process then 
continues to further elaborate and strengthen the model. It is 
important to note that the model presented in Figure 1 is not 
suggested as an ideal representation of the process, but 
rather just one faithful formalization of the literature on the 
inquiry and modeling process.  

This model of a desirable inquiry-driven modeling process 
connects to the advice given in the metacognitive tutoring 
community that learning goals must be made explicit and 
explicitly communicated to the learners [40]. However, this 
process presents many of the learning challenges noted in 
the existing literature on modeling and inquiry in education 
and on metacognitive tutoring, as referenced in the Related 
Work section above. In a traditional classroom, all these 
difficulties are exacerbated even further by the need for a 
single teacher to provide guidance and instruction to 

multiple students or groups of students at once. This 
process is inherently explorational but demands guided 
instruction for productive learning [27], and a single teacher 
often will not be able to guide multiple groups exploring in 
different directions simultaneously. For these reasons, this 
research uses a metacognitive tutoring system to provide 
targeted, guided instruction to groups of students directly in 
the discovery context. 

MODELING AND INQUIRY LEARNING APPLICATION 
The inquiry-driven modeling in this research takes place in 
an exploratory learning environment called the Modeling & 
Inquiry Learning Application (MILA). In order to 
understand the nature of the tutoring and inquiry-driven 
modeling that takes place in this environment, it is first 
necessary to understand the nature of the models that 
students construct within this environment. 

Figure 2 shows the main MILA window. In the top left, 
teams write their description of the phenomenon that they 
are trying to describe. Teams then propose one or more 
hypotheses; each of these hypotheses then becomes a model 
of how that hypothesis could lead to the phenomenon. 
Teams may also use the left sidebar to launch simulations, 
take notes, and dismiss models they no longer wish to 
consider. Within the model, teams construct explanations 
comprised of nodes and edges. Each node features three 
parameters: the physical component of the system in the 

 

Figure 2: The Modeling & Inquiry Learning Applicati on being used to model a sudden, massive fish kill. MILA-T is shown in the 
bottom left, and pop-up feedback from the Guide is shown in the bottom middle. 



center (such as Fish or Phosphorus), the variable of the 
component in the top left (such as Population or Quantity), 
and the direction of change in the top right. Edges between 
nodes are causal; each trend causes the next one. For 
example, in this model, an increase in the quantity of 
fertilizer in a system causes an increased in the quantity of 
phosphorus and nitrogen. Students provide evidence for 
their models on the edges between nodes. On these edges, 
teams can write their explanation for why they believe a 
given connection is true and code it according to one of 
several categories of evidence, such as Logical 
Explanations and Similar System Observations. Based on 
the evidence provided, the color of the edge changes from 
red to orange to green; red signifies no evidence while 
green signifies ample evidence.  

MILA–TUTORING 
In this research, MILA is augmented with a tutoring 
extension called MILA–Tutoring (MILA–T). MILA–T is 
comprised of five distinct pedagogical agents that monitor 
and respond to students' behavior within the software. The 
goal of these agents is to help the process of inquiry-driven 
modeling in which students participate converge more 
closely to the process presented in Figure 1. To do so, these 
agents specifically monitor for successful demonstration of 
the process, as well as for the errors described previously. 

During engagement with MILA, the tutoring system is 
available in the bottom left corner of the window, as shown 
in Figure 2. Four tutors are visible: a Guide, a Critic, a 
Mentor, and an Interviewer. Each tutor plays a different 
functional role with regard to interaction with the team of 
students, but all are structured to teach the process of 
inquiry-driven modeling. A fifth tutor, the Observer, is 
invisible to students but operates in the background to 
provide information to the other tutors. Two of the tutors, 
the Guide and the Critic, will not provide feedback until it 
is solicited by the team, while the Mentor, Interviewer, and 
Observer are constantly monitoring the team's behavior and 
interrupting accordingly. When the Mentor and Interviewer 
wish to provide feedback to the team, they illuminate a light 
bulb icon on their avatar in the corner of the screen, as seen 
in Figure 2. Each agent follows a unique decision routine to 
intelligently select feedback to provide. The Guide and 
Critic run their routines whenever they are prompted for 
feedback by the team. The Mentor, Interviewer, and 
Observer run their decision routines after every action that 
the team takes, with a threshold constraining how often they 
will provide feedback to the team. 

The Observer 
The Observer constantly monitors the activity of the team 
and constructs three different assessments of the team's 
ability: a modeling assessment, an inquiry assessment, and 
an ecology assessment. Each model reflects a different 
aspect of the desired inquiry-driven modeling process. To 
construct the modeling assessment, the Observer watches 
the pattern of teams' construction and revision activities 

over time, checking for a willingness to rescind earlier 
conjectures, dismiss earlier hypotheses, and propose new 
explanations. To construct the inquiry assessment, the 
Observer monitors the quality and quantity of evidence 
teams provide in support of their explanation, including the 
degree to which articulating evidence is embedded in the 
model construction process. To construct the ecology 
assessment, the Observer checks for the presence of certain 
desired components and relationships, such as the team's 
ability to include invisible components in their model like 
chemicals and microscopic organisms. Each assessment is 
constructed of a number of lower-level criteria, such as a 
measure of the tendency of a team to rely on weak forms of 
evidence or the willingness of a team to remove or revise 
past portions of their explanation. These criteria are then 
used to establish an overall level of ability with the target 
skill for the other tutors to check (although the other tutors 
may also check the individual criteria). One example of a 
rule that the Observer uses to construct its assessment of the 
team's ability is: 

IF:  Students have just added a new connection to their 
model; AND: That new piece connection establishes a 
model demonstrating the complexity of parallel chains 
of causation. 

THEN: Increment the Parallel Causation criteria of 
the Modeling assessment. 

These models are provided to the other tutors to help them 
establish the team's ability and provide the proper feedback. 
The Observer also has a rudimentary model describing the 
team's interaction with the various tutors themselves so that 
the other tutors may provide feedback praising teams' 
willingness to seek help or encouraging them to use the 
tutoring system. 

The Guide 
The Guide's functional role is to anticipate the questions 
that the team may want to ask and provide answers to those 
questions on demand. To accomplish this, the Guide 
constructs a list of questions that the team may want to ask, 
with answers (or a list of follow-up questions) prepared for 
each question. To do so, she iterates through a list of rules 
each containing a set of percepts. These percepts examine 
several sources: the Observer's current model of the team's 
ability across all three dimensions, the current classroom 
context, and the current status of the team's models. Each 
rule maps a particular set of percepts to a question or set of 
questions the Guide may offer to the team; offering the 
question to the team is thus the action that the rule selects in 
response to the particular set of percepts. One example of a 
rule that the Guide uses to choose a question is: 

IF:  Students have begun to add evidential 
justifications to their models; OR: (Students have 
reached a point in the curriculum when evidence has 
been introduced; AND: Students have not yet reached 
efficacy with evidential justifications according to the 



Observer's model); OR: The students' current model is 
very large but lacks any evidential justifications. 

THEN:  Add to question list, "What does evidence 
mean?"; AND: Add to question list, "What are the 
different types of evidence?"; AND: Add to question 
list, "How should evidence be used in a model?"; 
AND: Add to question list, "What is the importance of 
evidence in science?". 

As she checks her rules, the Guide compiles a list of 
questions to offer. Once this compilation is done, the Guide 
offers the questions to the team, and they may select a 
question to which to receive an answer. Figure 2 shows the 
Guide providing an answer to a team's question about the 
difference between a hypothesis and a theory. 

The Guide is equipped with dozens of questions to offer to 
teams. These questions range from novice-oriented 
questions such as simple information on interacting with the 
software to expert-oriented questions on evaluating 
explanations and establishing scientific theories. The Guide 
is also equipped with targeted questions that identify and 
address specific actions or features of the team's model; for 
example, if the team constructs a model reliant on logical 
explanations, the Guide offers a question about how one 
might gather data to test such explanations. 

The Critic 
The Critic's functional role is to provide teams with 
feedback on the current quality of their model. Teams are 
encouraged to consult with the Critic when they are unsure 
of how to proceed or believe their explanation is sufficient. 
Like the Guide, the Critic is equipped with a set of rules 
that determine what feedback he selects and provides. The 
rules are ordered from basic feedback to advanced 
feedback. When called upon, the Critic iterates over each 
rule and checks the percepts associated with the rule; if the 
percepts trigger a match to the current state of the team's 
models or the Observer's assessment of the team's ability, 
the feedback associated with the rule is added to a pool of 
potential feedback to provide. Once an adequate selection 
of feedback is attained (~5 different suggestions), the Critic 
randomly selects one and displays it to the team. In this 
way, if the team asks for feedback multiple times, they 
receive different suggestions and can proceed even if the 
Critic provides a piece of feedback they cannot currently 
address. One example of a rule the Critic uses to select a 
piece of feedback is: 

IF:  Students have not yet written a phenomenon 
definition; AND: Students have already begun creating 
models. 

THEN:  Add to the advice selection pool, "You've 
created some models, but you have not yet written a 
description of your phenomenon. Remember, it is very 
important to have a strong idea of what you are trying 
to explain before you start explaining it!" 

Like the Guide, the Critic's feedback is based partially on 
the Observer's model of the team's ability and partially on 
the current state of the model that the team is currently 
constructing. For example, if a team has previously 
demonstrated an understanding of desirable forms of 
evidence (as seen in the Observer's assessment of the team's 
ability), the Critic will skip to more advanced feedback 
even if the current model retains some more basic 
weaknesses. In this instance, the Critic infers that the team 
is aware of this weakness because they have demonstrated 
an understanding of it in the past (although the Critic will 
still default to this feedback if it cannot find any more 
advanced feedback). 

The Mentor 
The Mentor similarly monitors for weaknesses in the team's 
modeling and evidence, but unlike the Critic, the Mentor 
will intervene and provide the team with unsolicited 
feedback. Thus, the Mentor plays the functional role of 
providing teams with feedback even when they are not 
soliciting help. The Mentor is comprised of a list of rules 
that he checks every time the team performs an action in the 
software. If the Mentor identifies a piece of feedback that 
he has not previously provided to the team, and if he has 
waited a certain period of time since the previous piece of 
feedback was provided, he interrupts the team to provide 
the feedback. If no such piece of feedback is identified, the 
Mentor remains dormant. One example of a rule used by 
the Mentor to identify feedback for the team is: 

IF:  The student has recently dismissed one of their 
models; AND: The student had not yet demonstrated 
proficiency with proposing and dismissing models 
according to the Observer's model of the student; 
AND: The student has not yet received positive 
feedback on dismissing models. 

THEN:  Make feedback available, "I see you've 
dismissed one of your initial hypotheses. Well done! 
Proposing and then ruling out hypotheses is an 
important part of science. It's crucial to reflect on your 
ideas and understand when you have disproven an 
earlier hypothesis." 

The Mentor is primarily comprised of pairs of rules each 
targeting certain portions of the Observer's assessment of 
the team's ability. If the team demonstrates a certain desired 
skill, the Mentor will praise the team's ability; if the team 
has not demonstrated that skill within a certain period of 
time, the Mentor will describe the skill and its value to the 
team. 

The Interviewer 
The Interviewer's function is to ask the team questions that 
they ought to learn to ask themselves. Every time the team 
performs an action, she checks if the action and other 
present information match the percepts for one of her rules. 
If so, she provides the question to the team, along with a 



text box to use to answer the question. An example of a rule 
used by the Interviewer to select a question is: 

IF:  Students have just dismissed a hypothesis; AND: 
(It is relatively early in the lesson; OR: The dismissed 
model was relatively simple.) 

THEN:  Ask, "What prompted you to dismiss that 
hypothesis so quickly?", followed by, "Sometimes 
hypotheses don't go anywhere at all and can be 
dismissed pretty quickly, but remember to always 
have a reason to dismiss an earlier hypothesis!" 

The Interviewer checks every action that the team performs 
and intervenes at critical junctures to ask the team to 
explain its reasoning. In this way, the Interviewer aims to 
encourage reflective learning by explicitly asking the team 
to reflect on their reasoning at critical junctures of the 
inquiry-driven modeling process. When prompted to reflect 
by the Interviewer, she provides the team with a text box in 
which to write their answer; this information is stored for 
subsequent analysis.  

Interactions Among Tutors 
The tutors are also symbiotic in that they also reference one 
another during their interactions with the teams. The Critic, 
for example, suggests the team consult the Guide if they are 
unclear about why he is emphasizing strong pieces of 
evidence or more elaborate mechanisms. The Guide 
encourages teams to pay attention to the feedback from the 
Mentor in order to discern whether they are successfully 
executing the inquiry-driven modeling process. The Mentor 
promotes heavy use of the Critic when teams appear to 
stagnate in development of their explanations as a way of 
discerning areas for improvement. Both the Guide and the 
Mentor also help frame the Interviewer's questions as 
reflective exercises rather than summative assessments. 
This symbiotic relationship may also explain the 
observation that interaction with the tutoring system most 
often spawns further interaction with the tutoring system. 
As noted below, 56.34% of all interactions with one of the 
tutors were followed by another interaction with the 
tutoring system. 

EXPERIMENTAL DESIGN 
MILA and MILA–T were deployed in two-week unit in 7th 
grade life science classrooms. During this unit, students 
were broken into teams of two or three and completed two 
projects. The first project (the "Learning" project) was 
given four 50-minute periods; in this project, students were 
asked to explain a sudden, massive fish kill in Lake Clara 
Meer. The second project (the "Transfer" project) was given 
one 50-minute period; in this project, students were asked 
to explain Atlanta's record-high temperatures over the past 
20 years. In addition to these five periods, students spent 
two periods gathering data and completing lab exercises 
without MILA and two periods completing assessments. 

Two teachers participated in the intervention, each with five 
classes. For each teacher, two classes were assigned to a 

control group and three classes were assigned to an 
experimental group. In the control group, 34 teams of 
students (99 total students) used MILA without MILA–T. 
In the experimental group, 50 teams of students (138 total 
students) used MILA with MILA–T during the Learning 
project and MILA without MILA–T during the Transfer 
project (only 47 experimental teams completed the Transfer 
project). This design enables identification of how teams 
interact differently while receiving feedback from the 
tutoring system and how teams' behavior changes in future 
projects based on prior interaction with a tutoring system.  

We collected several types of data during this intervention. 
For this analysis, the most significant data are the 
interaction logs taken from each team. At the conclusion of 
the intervention, these logs were gathered together and 
separated by group (control or experimental) and project 
(Learning or Transfer). These logs then became the primary 
data source for the analysis outlined below. 

ANALYSIS 
We conducted two analyses on these interaction logs. First, 
we compared the interaction logs between the control and 
experimental students to see how interaction with MILA–T 
altered students' modeling and inquiry process, both during 
interaction with MILA–T (the Learning project) and after 
MILA–T was disabled (the Transfer project). Then, we 
analyzed the way in which the tutoring system was used by 
the experimental group during the Learning project. In 
order to perform both these analyses, the raw interaction 
logs were processed into Markov Chains mapping the 
software interactions into phases of the inquiry-driven 
modeling process described in Figure 1. 

Markov Chains 
To analyze the log data, we developed Markov chains 
describing the patterns of interaction in which teams 
engaged. Markov chains are mathematical systems that 
summarize transitions amongst a number of distinct states 
in a state space [25]. Markov chains are characterized as 
memoryless; it is inferred that next state chosen in the state 
space is determined by a probability function taking only 
the current state as an argument [31]. Although we would 
infer that a longer history of interactions likely helps 
determine the next state in a sequence in our analysis, for 
the purpose of this analysis Markov chains provide a useful 
device for examining differences based on the presence of 
the metacognitive tutoring system. Markov chains differ 
from hidden Markov models in that Markov chains allow 
the states themselves to be identified separately from the 
data; hidden Markov models derive the states from patterns 
in the data [15]. Markov chains were chosen rather than 
hidden Markov models to allow for more direct mapping to 
the inquiry-driven modeling process described earlier. 

Part of one of these Markov chains is shown in Figure 3. 
Given the complexity of these Markov chains (twelve states 
with almost 100 notable edges), the chain is presented here 
as a table rather than a more traditional set of nodes and 



edges. Along the left and along the top, the twelve activities 
in which students engage during the inquiry-driven 
modeling process are shown; these activities summarize 
lower-level software interactions and map those interactions 
to the inquiry-driven modeling process presented in Figure 
1. Differentiating construction and revision of evidence is 
done to capture modifications to prior ideas instead of 
merely ongoing additions to the model. Consulting Tutor is 
not a part of the inquiry-driven modeling process, but rather 
is a general activity to be performed whenever students are 
stuck, believe they are finished, or otherwise receive input. 
The rows represent the "previous" activity a team 
completed and the columns represent the "next" activity a 
team completed (except the "Number of Instances" column, 
which shows the number of observed instances of the 
activity for that row). In this way, each cell of the table 
represents the number of times teams followed the activity 
on the left with the activity on top. For example, at the 
intersection of the Constructing Model row and 
Constructing Evidence column is the number 5.07%; this 
means that 5.07% of the time that teams performed an 
action in the Constructing Model activity, they followed it 
with a Constructing Evidence activity. Similarly, the 
intersection between the Consulting Tutor row and the 
Consulting Tutor column shows the number 56.34%: this 
means that 56.35% of interactions with the tutoring system 
were followed by another interaction with the tutoring 
system. 

These Markov chains are useful tools for analysis because 
they summarize the overall pattern of interaction performed 
by each group. Aggregating together the interaction logs 
from all teams in the control and experimental groups gives 
us expansive Markov chains summarizing thousands of 
activities, allowing us to compare the patterns of interaction 
between teams interacting with the tutoring system and 
those without it. However, merely comparing the patterns 

of interaction is of limited usefulness; the goal of 
interaction with the intelligent tutoring agents is to improve 
the team's inquiry-driven modeling. Toward that end, it is 
necessary to articulate what "improved" inquiry-driven 
modeling would look like in these models. 

Desired Improvements 
The objective of this research is to teach students the 
metacognitive process of inquiry-driven modeling. As 
described previously, MILA–T gives students feedback on 
the modeling process, and the desire is to see students 
respond to this feedback by improving their inquiry-driven 
modeling process. In order to identify improvement, 
however, it is first necessary to operationalize what 
improvement would look like in terms of these Markov 
models. Based on the research and our prior experience in 
developing and deploying exploratory learning 
environments, we derived nine behaviors that would be 
indicative of improved inquiry-driven modeling that are 
captured by these Markov chains. For the purposes of 
describing the operationalization of these desired 
improvements, 'Using Simulation' and 'Taking Notes' are 
combined under the broader activity of 'Data Gathering 
Activities'. The nine differences we monitor for in the 
Markov chains are: 

·  Greater incidence of articulating the problem prior to 
modeling and inquiry. This is operationalized by a 
greater prevalence of a transition between Start and 
Writing Problem Definition (found at the intersection 
of the Start row and Writing Problem Definition 
column in the Markov chain in Figure 3). 

·  Greater incidence of using the results of data-
gathering activities to construct new evidential 
justifications. This is operationalized as a greater 
prevalence of a transition between Data-Gathering 
Activities and Constructing Evidence. 

Figure 3: One of the Markov models used to analyze teams' patterns of interaction with MILA and MILA-T . Due to the number of 
activities, the chain is shown as a table. 



·  Greater incidence of using the results of data-
gathering activities to revise previous evidential 
justifications. This is operationalized as a greater 
prevalence of a transition between Data-Gathering 
Activities and Revising Evidence. 

·  Greater incidence of using the results of data-
gathering activities to refute previous hypotheses. 
This is operationalized as a greater prevalence of a 
transition between Data-Gathering Activities and 
Dismissing Model. 

·  Greater incidence of using the results of data-
gathering activities to propose new hypotheses. This 
is operationalized as a greater prevalence of a 
transition between Data-Gathering Activities and 
Proposing Hypothesis. 

·  Greater incidence of revising the problem definition 
throughout the process. This is operationalized as a 
greater overall prevalence of the Writing Problem 
Definition activity (the percentage of all actions that 
fall into the Writing Problem Definition activity, not 
shown in the model in Figure 3). 

·  Greater incidence model revision. This is 
operationalized as a greater overall prevalence of the 
Revising Model activity (the percentage of all 
actions that fall into the Revising Model activity, not 
shown in the model in Figure 3). 

·  Greater incidence of model construction activities 
spawning further information-gathering activities. 
This is operationalized as a greater prevalence of a 
transition between Model Construction and Data-
Gathering Activities. 

·  Greater incidence of note-taking. This is 
operationalized as a greater overall prevalence of 
Taking Notes from data-gathering outside MILA (the 
percentage of all actions that fall into the Taking 
Notes activity, not shown in the model in Figure 3). 

These nine criteria are regarded as indicators that one 
team's metacognition is superior to another's. Even in the 
absence of acceptance of these criteria as indicative of 
improved metacognition, however, these nine criteria 
represent desirable improvements in the inquiry-driven 
modeling process. 

Comparison of Markov Chains 
This research hypothesizes that interaction with the 
metacognitive tutoring system will improve teams' inquiry-
driven modeling process compared to teams that do not 
interact with the metacognitive tutoring system. For this 
analysis, improvement is operationalized as greater 
incidence of the nine desirable behaviors outlined 
previously. Thus, the goal of this analysis is to identify 
whether teams in the experimental group exhibited greater 
incidence of any of these nine desired behaviors compared 

to teams in the control group. To determine whether the 
experimental group was superior in any of these nine 
comparisons, we performed a two-tailed Z-test on each pair 
of numbers derived from the Markov chains. For example, 
in order to test whether the experimental group 
demonstrated a great incidence writing problem definitions 
prior to performing any modeling and inquiry activities 
during the Learning project, we performed a two-tailed Z-
test comparing the value at the intersection of the Start row 
and Writing Problem Definition column in the experimental 
group's Markov chain (in this case, 90.00%) with the 
corresponding value in the control group's Markov chain (in 
this case, 88.24%). 

This repeated Z-test approach raises the odds of a Type I 
(false positive) error. To account for this, we used �  = 0.01 
as the threshold for accepting the results of any one of the 
Z-tests. We then performed a Bernoulli (or binomial) trial 
to determine the number of expected false positives with 
nine trials and p = 0.01. This Bernoulli trial revealed a 
91.4% chance of no false positives, an 8.3% chance of one 
false positive, and a 0.3% chance of more than one false 
positive. Thus, we may infer that no more than one 
significant difference in the repeated Z-test is a false 
positive (given that p < 0.01 that more than one false 
positive would occur). 

During the Learning project, three of the nine criteria 
showed statistically significant differences between the 
control and experimental groups. Teams in the experimental 
group demonstrated an increased propensity to revise their 
problem definitions over time (p <0.001, Z = 4.102) and to 
revise their models over time more generally (p < 0.01, Z = 
2.647). The control group demonstrated an increased 
propensity to take notes (p < 0.01, Z = �2.89). Based on the 
aforementioned Bernoulli trial, we can conclude that no 
more than one of these differences was a false positive, and 
therefore there did exist statistically significant 
improvements by the experimental group in their propensity 
to revise either problem definitions or models over time. 
Given that one of the three differences presented improved 
performance by the control group, we must stop short of 
claiming that the experimental group was more generally 
superior. Nonetheless, we may conclude that the 
experimental group was superior in at least one dimension. 

During the Transfer project, three of the nine criteria 
showed statistically significant differences between the 
control and experimental groups. Teams in the experimental 
group demonstrated an increased propensity to revise their 
models over time (p < 0.01, Z = 2.716) and to take notes (p 
< 0.0001, Z = 3.593). Teams in the control group 
demonstrated a significantly increased propensity to revise 
their problem definitions over time (p < 0.01, Z = �3.511). 
Interestingly, the control and experimental groups 
alternated areas of superiority between the two projects. 
Considering the Bernoulli trial described, we can conclude 
that a minimum of two of these observed differences were 



not false positives. The experimental group was superior to 
the control group in either their propensity to revise their 
models over time or their propensity to take notes. 
Although we again must stop short of claiming that the 
experimental group was more generally superior, we can 
conclude that the experimental group was superior in at 
least one dimension. 

The results of the Bernoulli trials show that given three 
successes, two must not be false positives; thus, for each 
project, either the experimental group was superior in two 
dimensions or the control and experimental groups were 
each superior in one dimension. Given that either 
possibility features the superiority of the experimental 
group in at least one dimension, we may conclude that the 
experimental group was superior in at least one dimension 
during both the Learning and Transfer projects.  

Examination of Tutor Usage Patterns 
Following the previous analysis of the difference in inquiry-
driven modeling processes between control and 
experimental groups, we conducted a follow-up analysis 
more narrowly on the role that MILA–T played in the 
experimental group during the Learning project. The goal 
of this analysis is to determine the nature of teams' 
interaction with the tutoring system and to construct a case 
for how the tutoring system impacts the teams' inquiry-
driven modeling process, with the hypothesis that 
interaction improves their execution of the process. Using 
an additional Markov chain of the transitions amongst the 
activities including each tutor individually, we identified a 
number of patterns to the usage of MILA–T among 
experimental teams. These observations are qualitative 
given the lack of an alternate pattern of engagement with 
the tutors against which to test these values. 

The first observation is that interaction with MILA–T was 
deeply embedded in experimental teams' interactions with 
MILA during the Learning project. 24.64% of all 
interactions during the Learning project fell into the 
Consulting Tutor activity, with 1769 total individual 
instances of teams consulting the tutoring system. Each of 
these instances represent the team receiving feedback from 
a tutor or giving an answer to one of the Interviewer's 
questions. The second observation is that tutor interaction 
most often begets further tutor interaction. 56.34% of tutor 
interactions are followed by an additional tutor interaction, 
suggesting that teams of students seek multiple pieces of 
feedback. This most often was seen in interactions with the 
Critic as students requested different feedback. 

The third significant observation is that after exiting a loop 
of tutor interactions, teams most often transition to either 
model construction or evidence construction. This mirrors 
the feedback teams most often receive from the tutoring 
system. Much of the tutoring system's targeted feedback 
attempts to support teams in transitioning toward mature 
modeling and inquiry behaviors characterized by varied and 
strong evidence in support of their models and thorough 

mechanisms explaining the chain of events leading from 
their hypotheses to the phenomenon. In both these cases, 
the solution is to construct additional portions of the model 
by either providing more evidence or elaborating on the 
mechanism. The tutors most often ground this feedback in 
the teams' current explanations, pointing out when they are 
relying too heavily on simple logical explanations and 
observations. In these instances, though, removing prior 
evidence is not encouraged; instead, teams are encouraged 
to corroborate their logical explanations with stronger 
evidence. These observations are corroborated by other 
Markov chains at the level of the specific tutor. The 
Mentor's feedback is most often followed by model 
construction (15.45%) and model revision (10.30%), while 
the Critic's feedback is most often addressed by evidence 
construction (15.63%) and evidence revision (2.95%). 

CONCLUSIONS 
This paper presents a set of intelligent tutoring agents that 
teach students an authentic metacognitive process of 
inquiry-driven modeling. Based on the results seen here, we 
see evidence that engagement with a metacognitive tutoring 
system during an inquiry-driven modeling activity 
improved students' participation in the process in certain 
specific ways. Although the Bernoulli trial leaves open the 
possibility that certain improvements may be false 
positives, the repeated improvement in propensity to revise 
models over time in the Learning and Transfer projects 
suggests that teams both acted on and internalized the 
feedback received from the tutoring system. The qualitative 
analysis of interaction with the tutoring system, which 
showed tutor interactions were most often followed by 
construction and revision activities, further supports that 
interaction with the tutors encouraged further construction 
and revision. This suggests more frequent iteration through 
the inquiry-driven modeling process, which may be 
interpreted as decreased propensity to accept an explanation 
of the phenomenon too early. Further analysis is required to 
validate these ideas; the data presented here merely shows 
that teams receiving feedback from the tutoring system 
show an increased propensity to revise their models over 
time rather than adhere to their initial conjectures. 

This analysis provides one perspective on the results of this 
intervention. We have also found that engagement with 
MILA–T improves students' dispositional orientation 
toward science and science careers [21], and improves the 
final explanations of the target phenomena that teams 
generate [20]. We are also exploring the impact of other 
features of MILA, such as MILA–S, a system for 
generating simulations from the conceptual models 
developed within MILA [22]. 
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