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ABSTRACT

This paper presents the design and evaluation st aof
intelligent tutoring agents constructed to teacants of
students an authentic process of inquiry-driven efing.
The paper first presents the theoretical groundiag
inquiry-driven modeling as both a teaching strategy a
learning goal, and then presents the need for duide
instruction to improve learning of this skill. Hower,
guided instruction is difficulty to provide in a eto-many
classroom environment, and thus, this paper mdiesdse
that interaction with a metacognitive tutoring ystcan
help students acquire the skill. The paper theeridess the
design of an exploratory learning environment,
Modeling and Inquiry Learning Application (MILA),nal
an accompanying set of metacognitive tutors (MILA-T
These tools were used in a controlled experimett &
teams (237 total students) in which some teamsivete
and interacted with the tutoring system while otteams
did not. The effect of this experiment on teams'
demonstration of inquiry-driven modeling are presdn

the

Author Keywords

Metacognitive tutoring; scientific discovery; sciidic
inquiry; discovery-based learning; inquiry-baseatiéng;
constructionism; guided instruction.

ACM Classification Keywords

K.3.1: Computer Uses in Education (Computer-Asdiste
Instruction); 1.2.11: Distributed Atrtificial Intatjence
(Intelligent Agents); J.3 Life and Medical Sciences

INTRODUCTION
Constructionism has been one of the dominant theasf
modern instructional design for several decades.

Originating from the theories of Jean Piaget [38d a
Seymour Papert [37], constructionist learning appheas
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advocate learning in open-ended environments where
learner plays a significant role in driving therl@iag goals
and outcomes. Constructionist learning approacbegedn
various forms, such as discovery-based learning], [19
problem-based learning [14], project-based learnibg
experiential learning [29], and inquiry-based léag13].

An inquiry-oriented approach to science educatias two
valuable effects. First, the literature on discgveased
learning points to improvements to student engagé@ued
learning through participation with such a pedagabi
approach [42, 46, 48]. Second, inquiry and discp\ae

valuable in and of themselves because they areciatith
representations of participation in real scientifesearch.
One goal of early science education is to stokelesits'
mastery of science and interest in science carpEks

toward this end, participation in an authentic eis is a
valuable learning experience on its own [21].

However, these constructionist learning approaeiesnot
without valid criticisms. Kirchner, Sweller, & Clarargue,
from both theoretical and empirical viewpoints,ttparely
unguided or minimally-guided instructional approestare
insufficient [27]. Rather, they suggest that guided
instruction is critical early in the learning praese Guided
instruction, they argue, provides the learner witie
foundational knowledge and skills necessary to rbdgi
drive their own discovery and learning. Other stgdhave
similarly corroborated the weakness of discovelgsged
approaches in certain settings and domains [28, 32]

The work presented here addresses this need foledui
instruction in the context of scientific inquiry, oakeling,
and discovery. The objective of this research igetach
students the metacognitive process of inquiry-drive
modeling through interaction with a set of intedlig agents
embedded in a software environment. We have degdlap
series of exploratory learning environments thaabbm
students to investigate complex ecological phenanj28,
50] which leverage inquiry-driven teaching. Student
demonstrated  significant  improvement in  deep
understanding after using these environments [Auf,we

also observed the kinds of weaknesses noted above.

Learners often exhibited subpar investigative psees, and
while their deep understanding of the systems iwguip
the actual process of inquiry and modeling did not.



Informed by these experiences, we have augmented ouhey then gather that data as part of the inquioggss and

most recent exploratory learning environment, the
Modeling & Inquiry Learning Application (MILA), wh an
extension to provide guided instruction directly he
context of a modeling and inquiry activity. Thistemxsion,
MILA-Tutoring (MILA-T), supplies five distinct
intelligent agents, each mimicking a particular dional
role that a teacher traditionally plays in a classn. In this
paper, we first present the design of five pedagalgi
agents, the ways in which they track student beinaswer
time, the feedback that they provide, and the wmawltich
they interact with teams during the inquiry-drivedeling
process. We then present the design and resultanof
experiment with 238 middle school science students
working in groups of two or three to investigatedan

construct a model of an ecological phenomenon. We
seen based omMetacognitive Tutoring

present the differences in behavior
interaction with the tutoring system and deepetyais of
the role that these tutoring agents played in tiguiry-
driven modeling process.

RELATED WORK

This research builds on prior research in a variety
communities, including intelligent tutoring systems
exploratory learning environments, artificial inigént in
education, intelligent user interfaces, and leayrsaiences.
Most prominently, however, this work represents then

of two communities: modeling and inquiry in science
education and metacognitive tutoring.

Modeling and Inquiry in Education

Significant attention has been devoted to develppin
approaches to science education that
participation in authentic scientific practice. $hkind of

teaching strategy leverages the appeal of conginist

learning approaches described previously as well

exposes students to the authentic way in whichnseids

performed in the real world. Such directions hawerb

encouraged by both policy makers [33] and reseasch
[12, 30, 42]. Generally speaking, scientific modele

use it to corroborate the model's predictive power
elaborate on the model's mechanistic explanati®?f |

Educational approaches that unite modeling andiipqu
have been used extensively in science education424
52]. However, these discovery-based approachesubiject

to the same challenges noted previously [27, 2§, 32
Implementing guided instruction in these types of
interventions presents a pragmatic difficulty: tdifficult

for a single teacher to monitor and guide the opesed
inquiry and discovery of multiple students or grsupf
students at once. This difficulty is exacerbatedniquiry
and modeling by the more general difficulties withching
metacognitive skills, which have previously beeeniified

by the metacognitive tutoring community.

Metacognitive tutoring is an extension of cognitiog
intelligent tutoring. Whereas intelligent tutorirgystems
typically address cognitive skills [e.g. 49, 53],
metacognitive tutoring initiatives attempt to coost
intelligent agents that teach students metacognisikills

like self-regulated learning [2], self-explanati¢@] and
help-seeking [1]. These kinds of metacognitivelsHKilave
been identified as one of the most crucial learmjogls of
early education [3, 6, 11]. However, teaching megmmdtion

has a number of unique challenges. Roll et al. 2007
provides an overview of many of these unique chaks
[40]. Metacognitive skills tend to be domain-indegdent,

but must be taught within a specific domain. Stusldrave

a natural tendency to emphasize the domain-specific

encouragéearning rather than the metacognitive skills. Metmitive

skills are also difficult to teach explicitly. Beasse
metacognition occurs within the mind of the reasptieere

asgs no inherent externally observable behavior oft flom

which to learn. In the following section, the natuof
inquiry and modeling as metacognitive skills is geneted;
however, we may also see the connection betweaeriryng
modeling, and metacognition by the shared diffiesltoth

representations of the system and are used to makgresent. Like other metacognitive skills, inquirynda

predictions about the system for further analys3g].
Models come in many different forms, including
descriptive, prescriptive, conceptual, simulativegusal,
dynamic, mechanistic, explanatory, visual, and m@e

18]. For this research, we focus on models that are

explanatory and mechanistic [17].

Scientific inquiry is tightly connected with scidit
modeling. Inquiry is the process by which sciestist
learners examine the domain or phenomenon thatahey
investigating, find useful observations or dataj ase that
data to test and expand their understanding ofsyistem
[43]. A scientific model, in this sense, serves ths
destination for newly-unveiled data, as well as an
organizing tool for determining future areas ofuirg [34].
Scientists use models to make predictions for what
observations they would expect if the model is aai®)

modeling are difficult to teach because they elaigiely in
the mind of the learner or scientist and becauseetis a
tendency to focus on the domain knowledge ratreem the
metacognitive skill.

INQUIRY-DRIVEN MODELING

This research aims to teach students the process|aify-
driven modeling within an authentic activity in émgical
investigation. We define 'inquiry-driven modelings a
particular type of the modeling and inquiry process
which the modeling process is driven by the resais data
uncovered during inquiry activities; in turn, thesultant
model helps structure and direct the continued imgqu
activities. Other initiatives have taught inquig6| 48] and
modeling [4, 47] separately, but this work teachiesm
together as directed by the literature on inquinyd a
modeling in authentic scientific research [34].



The case for inquiry-driven modeling as a metadbgni
skill is derived from three connections. First, uirg-driven
modeling meets the definition of a metacognitivell.sk
Metacognition, as defined by Weinert 1987, is "atgn
about cognition; that is, it refers to second-orcagnitions:
thoughts about thoughts, knowledge about knowlegige
reflections about actions" [51]. The target of inquiry-
driven modeling task is one's own knowledge or
understanding, aligning with the definition of
metacognitive skill. Second, inquiry-driven modgliis in
many ways a local instantiation of the broader -self
regulated learning process. Inquiry-driven modeliages
the general principles of self-regulated learnigg 7, 11,
36], such as planning, self-monitoring, strategizimnd
self-assessment, and deploys them in a particudarach
with an additional set of rules, standards, andctimes.
Third, prior research has articulated the naturénqtiiry
and modeling as metacognitive skills. Most notabl{hite

& Frederiksen explored this issue by initially wpin
metacognition as a way of creating educational
interventions grounded in inquiry and modeling [&R2).
This work develops the idea of "metamodeling” krexige,

which is an understanding not simply of the procefs
modeling, but also to the role, function, and nded

modeling in scientific inquiry. Metacognitive tutog has
also been applied previously to the inquiry phaédéhe

process [16].

Process of Inquiry-Driven Modeling
The objective of this research is to teach studehés
metacognitive process of inquiry-driven modeling.order

4 to do so, we must first articulate a desirable psscof

inquiry-driven modeling. Based on significant ekxigt
research on inquiry and modeling in both educgid®n 43,
44, 52] and science [10, 34], and supported by awn
experience with inquiry and modeling in our exptors
learning environments in the past [17, 23, 50], leve
developed a model of the process of inquiry-driven
modeling, as shown in Figure 1. In this process,|&arner
(whether a student learning about ecology in asotesn or
a scientist learning about the world in an autleergsearch
setting) starts off by observing and describing som
phenomenon to investigate. They then propose omeooe
hypotheses that could explain this phenomenon dadth
some researchers suggest scientists gather infiormat

Observe
Phenomenon

Inquiry

Describe
Phenomenon

Propose
Hypothesis

Gather
information

Modeling

Model
Hypothesis

Is model
sufficient?

No

More complete mechanism

Consult
simulations

Consultdata
sources

More hard evidence

Refutation of hypothesis Cone
r Elaborate on
mechanism

Justify existing
claims

New hypothesis

Mechanism for hypothesis

Evidence for hypothesis

* - Numerous other sources of information possible; onlya subset isdisplayed her

Figure 1: A model of a desirable process of inquindriven modeling.



before developing hypotheses [35], which is algopsuted
by this model). These hypotheses then become pnalisn
models of the phenomenon. Using these modelsetradr
determines what is needed to confirm or expandribdel.
This leads to information-gathering in the worldhigh
brings new information back to the model. Basedtluia
new information, the model is altered, either dssimig it if
the new information contradicts the model, expagdinif
the new information provides mechanistic informatior
strengthening it if the new information confirmsegictions
that the model had previously made. This process th
continues to further elaborate and strengthen thaetn It is
important to note that the model presented in Eduis not
suggested as an ideal representation of the probess
rather just one faithful formalization of the litggare on the
inquiry and modeling process.

This model of a desirable inquiry-driven modelingpgess
connects to the advice given in the metacognititering
community that learning goals must be made expéod
explicity communicated to the learners [40]. Howg\this
process presents many of the learning challengesirin
the existing literature on modeling and inquiryeiducation
and on metacognitive tutoring, as referenced inRbkated
Work section above. In a traditional classroom, thfise
difficulties are exacerbated even further by thedéor a
single teacher to provide guidance and instructton

multiple students or groups of students at onceis Th
process is inherently explorational but demandsdepli
instruction for productive learning [27], and agianteacher
often will not be able to guide multiple groups xjmng in
different directions simultaneously. For these oeas this
research uses a metacognitive tutoring system awige
targeted, guided instruction to groups of studdirectly in
the discovery context.

MODELING AND INQUIRY LEARNING APPLICATION

The inquiry-driven modeling in this research takésce in

an exploratory learning environment called the Minde&
Inquiry Learning Application (MILA). In order to
understand the nature of the tutoring and inquiiyesh
modeling that takes place in this environment,sitfirst
necessary to understand the nature of the models th
students construct within this environment.

Figure 2 shows the main MILA window. In the topt]ef
teams write their description of the phenomenon thay
are trying to describe. Teams then propose one are m
hypotheses; each of these hypotheses then becomedeh

of how that hypothesis could lead to the phenomenon
Teams may also use the left sidebar to launch atiouls,
take notes, and dismiss models they no longer wash
consider. Within the model, teams construct exglana
comprised of nodes and edges. Each node features th
parameters: the physical component of the systertnén

{ Add } { Insert
@0 ¢, 't @ ¢

J

Define the Phenomenon:

g Save Run
(=] Model &

Sim

Erase Part H

Enter
of Model

[C=ae
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died in Lake Clara
Meer
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Acid rain killed the fish
An algal bloom killed th
|Global warming kills the
|Pollution kKilled the fish

Quantity -
Fertilizer

Propose New Hypothesis

Dismiss Model

It

Gather evidence:

Use a Simulation
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Click the middle of a node to move it, or click and drag its border to draw a connection to another node.

Population

Algae

Concentration

Oxygen

Population

Get help! |£] Guide

4| Interviewer

become a theory.

Theories start as hypotheses, and become theories over time with more evidence.
Once the hypothesis has been thoroughly tested and held up to scrutiny, it can

y,

Figure 2: The Modeling & Inquiry Learning Applicati on being used to model a sudden, massive fish kMILA-T is shown in the
bottom left, and pop-up feedback from the Guide ishown in the bottom middle.



center (such as Fish or Phosphorus), the variabltheo
component in the top left (such as Population oar@ity),
and the direction of change in the top right. Edgetsveen
nodes are causal; each trend causes the next ame.
example, in this model, an increase in the quamnity
fertilizer in a system causes an increased in tlentty of
phosphorus and nitrogen. Students provide eviddace
their models on the edges between nodes. On thiggess e
teams can write their explanation for why they ®deati a
given connection is true and code it according ne of
several categories of evidence, such as
Explanations and Similar System Observations. Based
the evidence provided, the color of the edge charfigam
red to orange to green; red signifies no evidentdew
green signifies ample evidence.

MILA-TUTORING

In this research, MILA is augmented with a tutoring
extension called MILA-Tutoring (MILA-T). MILA-T is
comprised of five distinct pedagogical agents thanitor
and respond to students' behavior within the so@#w@he
goal of these agents is to help the process ofiripgiiven
modeling in which students participate converge emor
closely to the process presented in Figure 1. Teaddhese
agents specifically monitor for successful demaistn of
the process, as well as for the errors describexdaqusly.

During engagement with MILA, the tutoring system is
available in the bottom left corner of the wind@g, shown
in Figure 2. Four tutors are visible: a Guide, ati€ra
Mentor, and an Interviewer. Each tutor plays aedédht
functional role with regard to interaction with theam of
students, but all are structured to teach the psoasf
inquiry-driven modeling. A fifth tutor, the Observeis
invisible to students but operates in the backgdotm
provide information to the other tutors. Two of theors,
the Guide and the Critic, will not provide feedbaghil it
is solicited by the team, while the Mentor, Intewer, and
Observer are constantly monitoring the team's biehawnd
interrupting accordingly. When the Mentor and latewer
wish to provide feedback to the team, they illurténa light
bulb icon on their avatar in the corner of the eoreas seen
in Figure 2. Each agent follows a unique decisimutine to
intelligently select feedback to provide. The Guided
Critic run their routines whenever they are prordpter

over time, checking for a willingness to rescindliea
conjectures, dismiss earlier hypotheses, and peopesv
explanations. To construct the inquiry assessmérg,

FObserver monitors the quality and quantity of ewmicke

teams provide in support of their explanation, uahg the
degree to which articulating evidence is embedaethe
model construction process. To construct the egolog
assessment, the Observer checks for the presemnestain
desired components and relationships, such asetim's
ability to include invisible components in their de& like

Logicalchemicals and microscopic organisms. Each assessmen

constructed of a number of lower-level criteriachsas a
measure of the tendency of a team to rely on weakd of
evidence or the willingness of a team to removeegise
past portions of their explanation. These critenia then
used to establish an overall level of ability witte target
skill for the other tutors to check (although thbey tutors
may also check the individual criteria). One exampf a
rule that the Observer uses to construct its assegsof the
team's ability is:

IF: Students have just added a new connection to their
model; AND: That new piece connection establishes a
model demonstrating the complexity of parallel clsai

of causation.

THEN: Increment the Parallel Causation criteria of
the Modeling assessment.

These models are provided to the other tutors ho them
establish the team's ability and provide the prdpedback.
The Observer also has a rudimentary model desgrithia
team'’s interaction with the various tutors themselso that
the other tutors may provide feedback praising &am
willingness to seek help or encouraging them to tinge
tutoring system.

The Guide

The Guide's functional role is to anticipate theestions
that the team may want to ask and provide answeitsose
questions on demand. To accomplish this, the Guide
constructs a list of questions that the team manytwaask,
with answers (or a list of follow-up questions) paeed for
each question. To do so, she iterates through afligles
each containing a set of percepts. These perceptaire
several sources: the Observer's current modeleofeam's

feedback by the team. The Mentor, Interviewer, andability across all three dimensions, the currertsstoom

Observer run their decision routines after evetyoacthat
the team takes, with a threshold constraining hfianahey
will provide feedback to the team.

The Observer

The Observer constantly monitors the activity of tham
and constructs three different assessments of éam's
ability: a modeling assessment, an inquiry assessned
an ecology assessment. Each model reflects a eafiffer
aspect of the desired inquiry-driven modeling psscerlo
construct the modeling assessment, the Observathest
the pattern of teams' construction and revisionvitiets

context, and the current status of the team's rsodich
rule maps a particular set of percepts to a questicset of
guestions the Guide may offer to the team; offerihg
guestion to the team is thus the action that tlegelects in
response to the particular set of percepts. Onmpbeaof a
rule that the Guide uses to choose a question is:

IF: Students have begun to add evidential

justifications to their models; OR: (Students have

reached a point in the curriculum when evidence has
been introduced; AND: Students have not yet reached
efficacy with evidential justifications according the



Observer's model); OR: The students' current mizdel
very large but lacks any evidential justifications.

THEN: Add to question list, "What does evidence
mean?"; AND: Add to question list, "What are the
different types of evidence?"; AND: Add to question
list, "How should evidence be used in a model?";
AND: Add to question list, "What is the importanae
evidence in science?".

As she checks her rules, the Guide compiles aolist
guestions to offer. Once this compilation is dahe, Guide

offers the questions to the team, and they maycsele
guestion to which to receive an answer. Figure@vshthe

Guide providing an answer to a team's question tathau

difference between a hypothesis and a theory.

The Guide is equipped with dozens of questionsffer ¢o
teams. These questions
guestions such as simple information on interactiity the

Like the Guide, the Critic's feedback is basedialyton

the Observer's model of the team's ability andiglrton

the current state of the model that the team iseatly
constructing. For example, if a team has previously
demonstrated an understanding of desirable forms of
evidence (as seen in the Observer's assessmém &am's
ability), the Critic will skip to more advanced fHsack
even if the current model retains some more basic
weaknesses. In this instance, the Critic infers tha team

is aware of this weakness because they have deratmust
an understanding of it in the past (although thigicCwill

still default to this feedback if it cannot find yarmore
advanced feedback).

The Mentor
The Mentor similarly monitors for weaknesses in tisem's
modeling and evidence, but unlike the Critic, thertbr

range from novice-orientedwill intervene and provide the team with unsolidite

feedback. Thus, the Mentor plays the functionak rof

software to expert-oriented questions on evaluatingproviding teams with feedback even when they are no

explanations and establishing scientific theorid®e Guide
is also equipped with targeted questions that ifleand
address specific actions or features of the tearatel; for
example, if the team constructs a model reliantomical
explanations, the Guide offers a question about bow
might gather data to test such explanations.

The Critic

The Critic's functional role is to provide teamsttwi
feedback on the current quality of their model. Meaare
encouraged to consult with the Critic when they ameure
of how to proceed or believe their explanationufisient.
Like the Guide, the Critic is equipped with a sétraes
that determine what feedback he selects and previtlee

rules are ordered from basic feedback to advanced

feedback. When called upon, the Critic iteratesr aach
rule and checks the percepts associated with teeifithe

percepts trigger a match to the current state efttam's
models or the Observer's assessment of the tedility,a
the feedback associated with the rule is addedpocd of

potential feedback to provide. Once an adequatecteh

of feedback is attained (~5 different suggestioti®,Critic

randomly selects one and displays it to the teamthis

way, if the team asks for feedback multiple timdwgy

receive different suggestions and can proceed dvtre

Critic provides a piece of feedback they cannotemnity

address. One example of a rule the Critic useslecsa
piece of feedback is:

IF: Students have not yet written a phenomenon
definition; AND: Students have already begun creati
models.

THEN: Add to the advice selection pool, "You've

created some models, but you have not yet written a

description of your phenomenon. Remember, it iy ver
important to have a strong idea of what you armgry
to explain before you start explaining it!"

soliciting help. The Mentor is comprised of a liftrules

that he checks every time the team performs aoraatithe

software. If the Mentor identifies a piece of feadk that

he has not previously provided to the team, andeithas
waited a certain period of time since the previpiece of

feedback was provided, he interrupts the team twige

the feedback. If no such piece of feedback is ifledt the

Mentor remains dormant. One example of a rule used
the Mentor to identify feedback for the team is:

IF: The student has recently dismissed one of their
models; AND: The student had not yet demonstrated
proficiency with proposing and dismissing models
according to the Observer's model of the student;
AND: The student has not yet received positive
feedback on dismissing models.

THEN: Make feedback available, "I see you've
dismissed one of your initial hypotheses. Well done
Proposing and then ruling out hypotheses is an
important part of science. It's crucial to refleatyour
ideas and understand when you have disproven an
earlier hypothesis."

The Mentor is primarily comprised of pairs of ruleach
targeting certain portions of the Observer's assess of
the team's ability. If the team demonstrates aagedesired
skill, the Mentor will praise the team's ability;the team
has not demonstrated that skill within a certaimiqake of
time, the Mentor will describe the skill and itslwea to the
team.

The Interviewer

The Interviewer's function is to ask the team qgoaestthat
they ought to learn to ask themselves. Every tingetéam
performs an action, she checks if the action artkrot
present information match the percepts for oneeofrbles.
If so, she provides the question to the team, aloith a



text box to use to answer the question. An exampéerule
used by the Interviewer to select a question is:

IF: Students have just dismissed a hypothesis; AND:
(It is relatively early in the lesson; OR: The dissed
model was relatively simple.)

THEN: Ask, "What prompted you to dismiss that

hypothesis so quickly?", followed by, "Sometimes

hypotheses don't go anywhere at all and can be
dismissed pretty quickly, but remember to always
have a reason to dismiss an earlier hypothesis!"

The Interviewer checks every action that the teanfopms
and intervenes at critical junctures to ask themte@
explain its reasoning. In this way, the Intervieveéms to
encourage reflective learning by explicitly askitng team
to reflect on their reasoning at critical juncturek the
inquiry-driven modeling process. When promptedefbect
by the Interviewer, she provides the team withx b@x in
which to write their answer; this information itd for
subsequent analysis.

Interactions Among Tutors

The tutors are also symbiotic in that they alsenefice one
another during their interactions with the teantse Tritic,
for example, suggests the team consult the Guitheif are

control group and three classes were assigned to an
experimental group. In the control group, 34 teamfs
students (99 total students) used MILA without MR
In the experimental group, 50 teams of student8 (bal
students) used MILA with MILA-T during the Learning
project and MILA without MILA-T during the Transfer
project (only 47 experimental teams completed tten3fer
project). This design enables identification of hteams
interact differently while receiving feedback frotimne
tutoring system and how teams' behavior changdstime
projects based on prior interaction with a tutorsygtem.

We collected several types of data during thisriretion.
For this analysis, the most significant data are th
interaction logs taken from each team. At the casioh of
the intervention, these logs were gathered togeémat
separated by group (control or experimental) anojept
(Learning or Transfer). These logs then becametimeary
data source for the analysis outlined below.

ANALYSIS

We conducted two analyses on these interaction eigst,
we compared the interaction logs between the cbatid
experimental students to see how interaction withA4T
altered students' modeling and inquiry processh dating
interaction with MILA-T (the Learning project) arafter

unclear about why he is emphasizing strong piedes oMILA-T was disabled (the Transfer project). Thene w
evidence or more elaborate mechanisms. The Guidenalyzed the way in which the tutoring system wseduby

encourages teams to pay attention to the feedbaok the
Mentor in order to discern whether they are suda#gs
executing the inquiry-driven modeling process. Mentor
promotes heavy use of the Critic when teams appear
stagnate in development of their explanations agy of
discerning areas for improvement. Both the Guide toe
Mentor also help frame the Interviewer's questi@ss
reflective exercises rather than summative assegsme
This symbiotic relationship may also explain
observation that interaction with the tutoring systmost
often spawns further interaction with the tutorisgstem.
As noted below, 56.34% of all interactions with afethe
tutors were followed by another interaction witheth
tutoring system.

EXPERIMENTAL DESIGN

MILA and MILA-T were deployed in two-week unit irthy

grade life science classrooms. During this unitidshts
were broken into teams of two or three and comgléte

projects. The first project (the "Learning" projeavas

given four 50-minute periods; in this project, stots were
asked to explain a sudden, massive fish kill ind_&i{ara
Meer. The second project (the "Transfer" projecywiven
one 50-minute period; in this project, studentsenvasked
to explain Atlanta's record-high temperatures dher past
20 years. In addition to these five periods, sttslespent
two periods gathering data and completing lab esesc
without MILA and two periods completing assessments

Two teachers participated in the intervention, eaith five
classes. For each teacher, two classes were adsigne

the

the experimental group during the Learning projdat.
order to perform both these analyses, the raw aot&m
logs were processed into Markov Chains mapping the
software interactions into phases of the inquiryein
modeling process described in Figure 1.

Markov Chains

To analyze the log data, we developed Markov chains
describing the patterns of interaction in which ntsa
engaged. Markov chains are mathematical systems tha
summarize transitions amongst a number of disttates

in a state space [25]. Markov chains are charaetéras
memoryless; it is inferred that next state chosethé state
space is determined by a probability function tgkomly

the current state as an argument [31]. Althoughweeld
infer that a longer history of interactions likelyelps
determine the next state in a sequence in our sisalfpr

the purpose of this analysis Markov chains proddeseful
device for examining differences based on the preEsef

the metacognitive tutoring system. Markov chainfedi
from hidden Markov models in that Markov chainsowall

the states themselves to be identified separatein the
data; hidden Markov models derive the states frattepns

in the data [15]. Markov chains were chosen rathen
hidden Markov models to allow for more direct magpto

the inquiry-driven modeling process described earli

Part of one of these Markov chains is shown in FEgBL
Given the complexity of these Markov chains (twedtates
with almost 100 notable edges), the chain is ptesehere
as a table rather than a more traditional set afescand



Figure 3: One of the Markov models used to analyzeams' patterns of interaction with MILA and MILA-T . Due to thenumber of
activities, the chain is shown as a table.
edges. Along the left and along the top, the twelstvities of interaction is of limited usefulness; the goaf o
in which students engage during the inquiry-driven interaction with the intelligent tutoring agentgaésimprove
modeling process are shown; these activities suimmmar the team's inquiry-driven modeling. Toward that ,eihds
lower-level software interactions and map thoseraitions  necessary to articulate what "improved" inquiryvdn
to the inquiry-driven modeling process presenteéigure modeling would look like in these models.
1. Differentiating construction and revision of @ence is
done to capture modifications to prior ideas indted
merely ongoing additions to the model. Consultingor is
not a part of the inquiry-driven modeling processt, rather
is a general activity to be performed whenever exttsl are
stuck, believe they are finished, or otherwise irecéput.
The rows represent the "previous" activity a team
completed and the columns represent the "nextViacta
team completed (except the "Number of Instancekineo,
which shows the number of observed instances of th
activity for that row). In this way, each cell dfie table
represents the number of times teams followed thigity
on the left with the activity on top. For examph, the
intersection of the Constructing Model row and
Constructing Evidence column is the number 5.078is t
means that 5.07% of the time that teams performed a
action in the Constructing Model activity, theylfoled it
with a Constructing Evidence activity. Similarlyhet
intersection between the Consulting Tutor row ahd t
Consulting Tutor column shows the number 56.34%s th

Desired Improvements

The objective of this research is to teach studehés
metacognitive process of inquiry-driven modelings A
described previously, MILA-T gives students feedban

the modeling process, and the desire is to seeemstsid
respond to this feedback by improving their ingtdrwen
modeling process. In order to identify improvement,
however, it is first necessary to operationalize atvh
improvement would look like in terms of these Marko
€models. Based on the research and our prior expperian
developing and deploying exploratory learning
environments, we derived nine behaviors that wadodd
indicative of improved inquiry-driven modeling thare
captured by these Markov chains. For the purpodes o
describing the operationalization of these desired
improvements, 'Using Simulation' and 'Taking Notms
combined under the broader activity of 'Data Gatiger
Activities'. The nine differences we monitor for the
Markov chains are:

means that 56.35% of interactions with the tutosggtem - Greater incidence of articulating the problem pteor
were followed by another interaction with the tingr modeling and inquiry. This is operationalized by a
system. greater prevalence of a transition between Stait an

Writing Problem Definition (found at the intersexti
of the Start row and Writing Problem Definition
column in the Markov chain in Figure 3).

These Markov chains are useful tools for analysisabise
they summarize the overall pattern of interactierf@rmed
by each group. Aggregating together the interactags

from all teams in the control and experimental gogives - Greater incidence of using the results of data-
us expansive Markov chains summarizing thousands of gathering activities to construct new evidential
activities, allowing us to compare the patterngtdraction justifications. This is operationalized as a greate
between teams interacting with the tutoring systemal prevalence of a transition between Data-Gathering

those without it. However, merely comparing theterais Activities and Constructing Evidence.



Greater incidence of using the results of data-to teams in the control group. To determine whetiner
gathering activities to revise previous evidential experimental group was superior in any of thesee nin
justifications. This is operationalized as a greate comparisons, we performed a two-tailed Z-test arhemir
prevalence of a transition between Data-Gatheringof numbers derived from the Markov chains. For epiam
Activities and Revising Evidence. in order to test whether the experimental group
- . demonstrated a great incidence writing problemnitadns
Greater |nC|d_enf:e of using the _results of data- prior to performing any modeling and inquiry adiis
ga’ghe_rmg activities to refute previous hypOtheseS'during the Learning project, we performed a twoethiZ-
This is operationalized as a greater prevalenca of o5t comparing the value at the intersection ofStet row
transition between Data-Gathering Activities and 54 writing Problem Definition column in the expeeintal
Dismissing Model. group's Markov chain (in this case, 90.00%) witte th

Greater incidence of using the results of data-corresponding value in the control group’s Markbaino (in
gathering activities to propose new hypothesess Thi this case, 88.24%).

is operationalized as a greater prevalence of arpjs repeated Z-test approach raises the oddsToipe |
transition between Data-Gathering Activities and (fajse positive) error. To account for this, we dise= 0.01
Proposing Hypothesis. as the threshold for accepting the results of amy af the

Greater incidence of revising the problem defimtio Z-t€sts. We then performed a Bernoulli (or binojntail
throughout the process. This is operationalized as [0 determine the number of expected false positivits

greater overall prevalence of the Writing Problem nine trials andp = 0.01. This_ Bernoulli trial revealed a
Definition activity (the percentage of all actiotimt ~ 91-4% chance of no false positives, an 8.3% chahome

fall into the Writing Problem Definition activityjot false positive, and a 0.3% chance of more than fatse
shown in the model in Figure 3). positive. Thgs, we may infer that no more _than one
significant difference in the repeated Z-test isfadse
Greater incidence model revision. This is positive (given thatp < 0.01 that more than one false
operationalized as a greater overall prevalendbef positive would occur).
Revising Model activity (the percentage of all
actions that fall into the Revising Model activityot
shown in the model in Figure 3).

During the Learning project, three of the nine emia
showed statistically significant differences betwethe
control and experimental groups. Teams in the eéxygatal
Greater incidence of model construction activities group demonstrated an increased propensity toaeisir
spawning further information-gathering activities. problem definitions over timep(<0.001, Z = 4.102) and to
This is operationalized as a greater prevalenca of revise their models over time more genergliy(0.01, Z =
transition between Model Construction and Data- 2.647). The control group demonstrated an increased
Gathering Activities. propensity to take notep € 0.01, Z = 2.89). Based on the
aforementioned Bernoulli trial, we can concludettha
jmore than one of these differences was a falsdiypmsand
therefore there did exist statistically significant
improvements by the experimental group in theipgresity

to revise either problem definitions or models otiere.
Given that one of the three differences presentgmtaved
These nine criteria are regarded as indicators ¢t performance by the control group, we must stop tshbr
team's metacognition is superior to another's. BEwethe claiming that the experimental group was more gaher
absence of acceptance of these criteria as indécaif superior. Nonetheless, we may conclude that the
improved metacognition, however, these nine céteri experimental group was superior in at least onesdsion.
represent desirable improvements in the inquiryedri
modeling process.

Greater incidence of note-taking. This is
operationalized as a greater overall prevalence o
Taking Notes from data-gathering outside MILA (the
percentage of all actions that fall into the Taking
Notes activity, not shown in the model in Figure 3)

During the Transfer project, three of the nine eriit
showed statistically significant differences betwethe

Comparison of Markov Chains control and experimental groups. Teams in the éxpatal
This research hypothesizes that interaction witle th group demonstrated an increased propensity toedhisir
metacognitive tutoring system will improve teanmgjuiry- models over timep(< 0.01, Z = 2.716) and to take note@s (

driven modeling process compared to teams thatao n < 0.0001, Z = 3.593). Teams in the control group
interact with the metacognitive tutoring system.r Fois demonstrated a significantly increased propensityevise
analysis, improvement is operationalized as greaterheir problem definitions over timg & 0.01, Z = 3.511).
incidence of the nine desirable behaviors outlined Interestingly, the control and experimental groups
previously. Thus, the goal of this analysis is deritify alternated areas of superiority between the twdgepts.
whether teams in the experimental group exhibitehigr Considering the Bernoulli trial described, we camaude
incidence of any of these nine desired behaviorspemed  that a minimum of two of these observed differenaese



not false positives. The experimental group wassapto
the control group in either their propensity toisevtheir

mechanisms explaining the chain of events leadimognf
their hypotheses to the phenomenon. In both thasesg

models over time or their propensity to take notes.the solution is to construct additional portionstod model

Although we again must stop short of claiming thiae
experimental group was more generally superior,cae
conclude that the experimental group was superioati
least one dimension.

The results of the Bernoulli trials show that gividmee
successes, two must not be false positives; tlursedch
project, either the experimental group was supeariamwo

dimensions or the control and experimental grougsew
Given that either

each superior in one dimension.
possibility features the superiority of the expestal
group in at least one dimension, we may conclude tthe
experimental group was superior in at least onesdsion
during both the Learning and Transfer projects.

Examination of Tutor Usage Patterns
Following the previous analysis of the differengeériquiry-
driven modeling processes between control

experimental groups, we conducted a follow-up asialy
more narrowly on the role that MILA-T played in the

experimental group during the Learning project. THoal

of this analysis is to determine the nature of t®am
interaction with the tutoring system and to cordtiau case
for how the tutoring system impacts the teams' imygu
the hypothesis that

driven modeling process, with
interaction improves their execution of the procddsing
an additional Markov chain of the transitions amsinipe
activities including each tutor individually, weeidtified a

number of patterns to the usage of MILA-T among
experimental teams. These observations are quxditat

given the lack of an alternate pattern of engagéméth
the tutors against which to test these values.

The first observation is that interaction with MIEA was
deeply embedded in experimental teams' interactiaitis
MILA during the Learning project. 24.64%
interactions during the Learning project fell inthe
Consulting Tutor activity, with 1769 total individu
instances of teams consulting the tutoring systeath of
these instances represent the team receiving fekdimm
a tutor or giving an answer to one of the Intendew
guestions. The second observation is that tut@raction
most often begets further tutor interaction. 56.3d®tutor
interactions are followed by an additional tutotenaction,
suggesting that teams of students seek multipleepi®f
feedback. This most often was seen in interactwits the
Critic as students requested different feedback.

The third significant observation is that aftertag a loop
of tutor interactions, teams most often transittoneither
model construction or evidence construction. Thisrars

the feedback teams most often receive from theritigo

system. Much of the tutoring system's targeted Haek
attempts to support teams in transitioning towarature
modeling and inquiry behaviors characterized byechand
strong evidence in support of their models and ahgh

of all

by either providing more evidence or elaborating tha
mechanism. The tutors most often ground this feeldla
the teams' current explanations, pointing out winety are
relying too heavily on simple logical explanatioasd
observations. In these instances, though, remopiragr
evidence is not encouraged; instead, teams areuegsd
to corroborate their logical explanations with stjer
evidence. These observations are corroborated bgr ot
Markov chains at the level of the specific tutorheT
Mentor's feedback is most often followed by model
construction (15.45%) and model revision (10.3084)ile
the Critic's feedback is most often addressed hgeece
construction (15.63%) and evidence revision (2.95%)

CONCLUSIONS

This paper presents a set of intelligent tutoriggrds that
teach students an authentic metacognitive procdss o
inquiry-driven modeling. Based on the results deere, we
see evidence that engagement with a metacognitigeng
system during an inquiry-driven modeling activity
improved students' participation in the processéantain
specific ways. Although the Bernoulli trial leavegen the
possibility that certain improvements may be false
positives, the repeated improvement in propensitsevise
models over time in the Learning and Transfer mtsje
suggests that teams both acted on and internalized
feedback received from the tutoring system. Thédigtiae
analysis of interaction with the tutoring systemhieh
showed tutor interactions were most often followeyl
construction and revision activities, further sugipathat
interaction with the tutors encouraged further ¢amtion
and revision. This suggests more frequent iteratwough
the inquiry-driven modeling process, which may be
interpreted as decreased propensity to acceptareation

of the phenomenon too early. Further analysisdsired to
validate these ideas; the data presented here yrareivs
that teams receiving feedback from the tutoringtesys
show an increased propensity to revise their modeds
time rather than adhere to their initial conjecsure

This analysis provides one perspective on the testilthis
intervention. We have also found that engagemerth wi
MILA-T improves students' dispositional orientation
toward science and science careers [21], and inegrtive
final explanations of the target phenomena thamgea
generate [20]. We are also exploring the impacbtiier
features of MILA, such as MILA-S, a system for
generating simulations from the conceptual models
developed within MILA [22].
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