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ABSTRACT 
Large undergraduate CS courses receive thousands of code 
submissions per term. To help make sense of the large quantities 
of submissions, projects have emerged to dynamically cluster 
student submissions by approach for writing scalable feedback, 
tailoring hints, and conducting research. However, relatively 
little attention has been paid to the value of these tools for 
informing revision to core course materials and delivery 
methods. In this work, we applied one such technology—Sense, 
the eponymous product of its company—to an online CS1 class 
delivered simultaneously for credit to on-campus students and 
for free to MOOC students. Using Sense, we clustered student 
submissions to around 70 problems used throughout the course. 
In this work, we discuss the value of such clustering, the 
surprising trends we discovered through this process, and the 
changes made or planned to the course based on the results. We 
also discuss broader ideas on injecting clustering results into 
course design. 
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1 Introduction 
One characteristic of large computer science courses is the 

presence of numerous different solutions to coding problems 
posed on homework assignments and tests. These solutions exist 
at an interesting intersection of more mathematical problems 
and more freeform problems: like mathematical problems, there 
exist objective criteria for correctness, but like essays or short-
answers, there is a nearly infinite number of ways to approach 
the problems correctly. Many of these different approaches may 
have superficial differences like differing variable names, but 
deeper similarity in their underlying structure and behavior [9]. 

CS educators need to be able to understand the breadth of 
student answers to inform their own teaching and to deliver 
appropriate feedback to the right students. However, manually 
coding student submissions for the type of approach taken is an 
arduous process, and the work involved grows linearly with 
scale. Efforts in other areas have been made to cluster student 
solutions for more efficient feedback and evaluation [1][15][22], 
but CS education has a unique opportunity due to the 
simulatability and underlying objective similarity between 
students’ answers. 
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To address this, multiple initiatives have arisen to perform 
this processing automatically (e.g. [5]). Most prior research, 
however, has focused on the mechanics of these systems rather 
than their use as a tool for researching patterns of student 
submissions and using those patterns to inform content 
revisions, tailored feedback, or new initiatives. In this research, 
we put one such system—Sense, the eponymous name of the 
company that developed it—to work in an online CS1 class. We 
begin by giving a brief background of the course in which the 
tool is used, and then provide a deeper look at some of the 
results that were uncovered through this analysis. We do not 
claim that these results reflect general trends in CS1 as we can 
only generalize to our instruction and delivery style, but rather 
they are emblematic of the kinds of analysis and results that can 
be generated using clustering tools such as Sense. Then, we 
discuss the immediate revisions made and planned for the course 
based on these results, as well as some more ambitious proposals 
for integrating content clustering more directly into the student-
facing course experience. This analysis and results together 
demonstrate the potential power of using code clustering tools 
for course content improvement. 

2 Related Work 
Significant work has been performed on clustering student 

responses based on similarity, both in computer science 
education and in education more broadly. Tools like GradeScope 
[22], Powergrading [1], and Mathematical Language Processing 
[13] address this issue in short answer or open math problems 
by first clustering student submissions together, then mapping 
those to tailored feedback. GradeScope in particular uses these 
clusters for emergent rubrics where instructors can modify point 
deductions for individual errors and have those modifications 
propagate to all student assignments present in similar clusters. 
More commonly, work has also been done for constructing 
expert systems with in-built knowledge of common error types 
[10][11]. 

More specifically within computer science education, 
OverCode [5] and other tools [18][19] address the same need by 
clustering and visualizing student responses to coding problems. 
Other work has been performed to generate formative feedback 
for students based on error models [11][12][24], match 
prewritten code feedback to new submissions [7][14][17], or 
identify the differences between new submissions and working 
submissions for tailored feedback [6][16][21][25][26][27]. 

Similar work has been done with different goals as well. 
Much of the early work on clustering student code submissions 
used abstract syntax trees to evaluate the likelihood that code 
plagiarism had taken place [20], a technique that has since been 
extended to educational environments [2][8]. 

Notably, however, despite the massive number of initiatives 
in this area, the significant focus has been on delivering 
individual feedback to the student. While this is without 
question a valuable goal, it is not the only relevant application of 
these technologies. Rather than relying on the system to deliver 
content feedback directly to students, it is also possible that 
systems like these could instead give instructors information 

about student patterns of interaction to be used in modifying the 
content itself.  

3 Course Background 
This analysis took place as part of the delivery of an online 

CS1 class. The class is simultaneously offered as a for-credit class 
at a major public research university in the United States and as 
a set of Massive Open Online Courses (MOOCs) to the public on 
the edX platform. Since its inception in January 2017, 785 
students have taken the class for credit, and nearly 1,673 have 
completed a public offering of the course as a MOOC. The class 
teaches Python 3 and presupposes no prior CS knowledge; it is 
intended as the first class that new CS majors take and also 
fulfills the CS requirement for all majors at the university. 

The analysis here more narrowly targeted for-credit students’ 
responses from two consecutive semesters (approximately 350 
total students) as the goal was to specifically revise the course 
content for the patterns present among these for-credit students. 

As part of the course experience, students complete 
approximately 350 programming problems. These problems 
come in three forms: exercises, which are interspersed between 
short video lectures; problems, which are collected into problem 
sets at the end of each course chapter; and tests, which are 
delivered as part of timed and digitally proctored assessments. In 
all three types of problems, students use a web-based 
programming interface that generates immediate feedback and 
evaluation on the correctness of their responses. A limited hint 
generation system is built in based on an expert system 
monitoring for the occurrence of certain code or output errors, 
but most evaluation takes place based on a comparison of 
student code output to the output of a correct answer to the 
same prompt. 

4 Clustering Results 
For this analysis, we used Sense to cluster student responses 

to every problem on each of six of the course’s problem sets. 
Each problem set is topic-specific: these six sets covered 
functions, error handling, strings, lists, file I/O, and dictionaries. 
Prior to these problem sets, students learn loops, conditionals, 
and operators, and so those concepts exist in their responses to 
these questions as well. It is important to note that the goal of 
this work is not to demonstrate a list of common errors and 
misconceptions in CS1 in general, but rather to show how 
clustering analyses can be used to uncover such patterns within 
specific courses with minimal effort. 

4.1 Clustering Example: The Rainfall Problem 
The sections below cover the high-level trends uncovered in 

each problem set, but to understand these results, it is useful to 
first look more deeply at the analysis of a single problem. One 
problem outside these problem sets that we evaluated was a 
variation on the famous [4] Rainfall problem [23], which was 
offered during the third timed and proctored test in the course. 
Due to technical constraints, rather than have students 
repeatedly get another piece of user input, our variation supplied 
students with a list of observed rainfall values as integers, into 



 

which -1 was inserted somewhere after the first digit. Students 
were asked to average and return all integers before -1. Most 
students answered the problem correctly (184 out of 190 who 
attempted it in one semester), although we questioned whether 
the modifications made to read from a list instead of from user 
input fundamentally changed the difficulty of the problem. 

To answer this question, we uploaded student submissions to 
Sense. We found first of all that the vast majority of students 
opted to use a for loop: only 4% of all student submissions used a 
while loop, which is the method that would more similarly 
match the traditional framing of the Rainfall problem. 67% of the 
submissions used a for loop, but broke the loop (either by calling 
break or by returning from within the loop) once it 
encountered a -1. So, while only 4% of students used a loop 
definition that would work for the traditional rainfall problem, 
71% had a loop body that would generally work for the 
traditional problem. 

Among the remaining 29% of responses, we observed some 
additional interesting variation. 8% of submissions first modified 
the list to remove all values after -1, either with the del 
command or by slicing the list until the first instance of -1, found 
through use of the list.find() or list.index() 
methods. They then averaged the remaining list, some with a for 
loop and some by calling sum(list)/len(list). 
Interestingly, the sum function is not covered in the course 
material. An additional 8% of students took a similar approach, 
but without using the find() or index() method. They 
initially looped over the list to find the index of -1, then either 
sliced the list or looped over the list again until that index. While 
not common, this reflected to us the need to reemphasize list 
slicing and indexing, which previously had been relegated 
primarily to a callback to the chapter on strings. 

Among the remaining 13% of responses, some entirely unique 
observations were observed; some were particularly 
sophisticated, while some were particularly suboptimal. On the 
sophisticated side, one student wrote two functions: one to 
average any list, and one to call that function on the list sliced up 
until the index of -1; another student completed the problem in a 
single line. These sophisticated responses were fruitful to share 
with students as exemplary answers. On the suboptimal side, 
one student generated an entirely new list and added values to it 
until -1 was reached; another student used nested for-loops to 
re-find the index of -1 for every value in the list. 

This analysis was performed for every one of the 70 problems 
across the six problem sets. The sections below summarize the 
interesting trends observed across the problems that we 
analyzed. 

4.2 Functions 
The 11th chapter of the course covered functions. For this 

chapter, the problem set contained twelve problems. Evaluating 
these problems, we discovered three primary trends. 

First, we found that most students’ submissions contain some 
unnecessary structural component, such as an else statement in 
which nothing really happens like adding zero to a count. For 
example, one problem asked students to check whether or not a 

string contained a series of three sevens. We found that 7% of 
students created an else block in which they either added zero to 
their count or used the keyword continue. This also occurred in 
another problem which asked students to find the average word 
length from a string. 26% of students used pass or “reassigned” a 
variable without changing its value, or added zero to their count.  

Second, we found that when using a formula, students often 
do their calculations in one or two long lines rather than 
breaking it up into parts. For example, one problem asked 
students to calculate the damage a Pokemon would face based on 
various parameters such as type and level. In this problem, 
though a lengthy formula was involved, only 27% of students 
broke their calculations into several parts. Another problem 
asked students to determine whether a given year was a leap 
year. We found that 17% of students did their calculations all in 
one line.  

Third, we found that students would sometimes use brute 
force rather than built in functions or functions of their own. For 
example, one problem asked the students to make a countdown 
given the range of numbers. Instead of using Python’s range 
function and a loop, 11% of students manually printed each 
number in the countdown. In another problem, students were 
asked to find the average word length given a string. This 
problem required the students to make three functions, one for 
word count, one for letter count, and one for average word 
length. To calculate letter count, students could use their word 
count function since this accounts for the number of characters 
that are not letters (spaces) but only 5% did while others 
recalculated the number of spaces. 

4.3 Error Handling 
The 12th chapter of the course covered error handling. For 

this chapter, the problem set contained eight coding problems. 
Evaluating these problems, we found two primary trends. 

The first trend is that as exercises rose in complexity, 
students demonstrated a stronger tendency to store the result of 
an expression into a variable prior to printing it, even if printing 
it was the only remaining task to be performed with the result of 
the expression. One early problem asked students to attempt up 
to three calculations, the first two of which could cause an error. 
48% of students printed the expressions’ results directly, while 
43% attempted the expression, stored its result in a variable, and 
then printed it if an error had not arisen. 

Two problems later, students were asked to find pressure 
given other values using the expression PV = nRT. Here, 71% of 
students stored the result of an expression in a variable, then 
later returned it. Only 22% returned the result directly, even 
though this approach led to fewer lines of code and a more 
straightforward algorithm. 

Secondly, in this chapter, students were able to individually 
formulate their own algorithms and approaches to more 
challenging coding prompts. In one later problem, students were 
asked to write a word count function that could correctly ignore 
consecutive spaces. 42% of students used a “forward-checking” 
algorithm, where when encountering a space, the function 
would check the next character in the string before incrementing 



 

 

the word count. 18% instead implemented a “backwards-check” 
algorithm with a boolean variable that tracked whether the 
previous character was a space. The following problem expanded 
on this prompt and saw even more significant differentiation: 57 
clusters of unique solutions were observed in the next problem, 
which removed the assumption that the string would start with a 
word and required students to take special steps in the event of 
strings with all punctuation marks or no characters. 

4.4 Strings 
The 14th chapter of the course covers strings, including 

indexing, splicing, and their context as a data structure. This 
chapter included a total of fourteen coding problems, the first 
eight intended for all students and the last six handling more 
advanced concepts. Two of the most prominent patterns 
included the use of the .find() method as opposed to a range 
for-loop and a common tendency for the len() function to 
cause an index error, and misunderstanding the difference 
between strings and lists of strings. 

First, as students gain more and more experience using 
Python and for-loops, they ought to realize that using for i 
in range() is advantageous because each iteration grants 
both the index and the piece of data through indexing brackets. 
However, many students in this chapter opted to use a for-each 
loop on their strings, utilizing the .find() method to retrieve 
the index of their values. This approach is suboptimal, however: 
even when it works, it is more complex and computationally 
intensive, and it also fails whenever the string has the same 
character multiple times. 

Second, it is common in Python to use the length of a string 
as a parameter in the range() function, such as for i in 
range(len(string)). In this case, the range begins at zero 
and ends with len(string)-1, as upper bounds are 
exclusive. However, that upper bound is invisible to students; 
thus, when they attempt to use the upper bound outside of a 
loop, they tend to use len(string). When Python encounters 
this, it will throw an index error because the loop tries to iterate 
past the length of the string. 

Third, the chapter teaches students the split() method, 
which splits a string into a list of strings; however, students do 
not cover lists until the next chapter. Thus, there are several 
instances where students treat the output of splitting a string as 
a string itself, such as trying to call upper() on the entire list. 

4.5 Lists 
The 15th chapter of the course introduced the topic of lists in 

Python. For this chapter, the problem set contained seven coding 
problems and four advanced coding problems. Evaluating these 
problems, we discovered three primary trends.  

The first major trend is that students very much preferred to 
use if statements vs if-else statements. In one question, students 
were asked to find names that appeared in one list but not 
another. Most (78%) students created an empty list, then ran a 
for loop through the first list of names with a nested if-
conditional that checked if the name in the first list was not in 

second. If that was true, they append that name to the empty list, 
and return that list at the end of the function. A smaller subset of 
students (10%) used the same process, with the exception being 
the nested if-conditional. They instead used an if-else 
conditional, where the if-statement determined if the name on 
the first list was in the second list. If it was, then pass; else, 
append that name to the empty list. This method was far less 
common and the code was longer than it could be, but it 
remained valid. Notably, this countered an earlier trend where 
students included structurally unnecessary elements in their 
code; it appears that as the course moves on, students develop 
more of a comfort with this abbreviated representation and 
fewer include unnecessary components. Similarly, in another 
question, students were asked to write a function that takes in a 
a list of integers and to find the average of all the integers 
greater than 100. The most common method (63%) was to create 
a variable and a counter both equal to zero, then loop through 
the list. A nested if-conditional would then check if the integer 
was greater than 100. If it was, then it was added to the sum and 
1 was added to the counter; at the end, the average was returned. 
As before, there was a small group of students (21%) who used 
an else as well, typically with pass or continue as the only 
body of the else block. 

The second trend is that students tended to understand, and 
even over-rely, on some list functions like indexing, appending, 
sorting, and iteration. In one problem, students were asked to 
find the movie with the highest sales from a list of tuples, each of 
which contained the movie title and the total ticket sales. Most 
students (51%) used a for loop to implement a typical linear 
search, looping through each tuple and analyzing the second 
index of the tuple. From there they found the maximum sale and 
returned the movie name. A smaller but significant group of 
students (19%) created an empty list, added all the sales to the 
new list, and then used the sort() method or max() function 
to get the highest gross. They then used another linear search to 
find which movie corresponded to that sale. In another question, 
students were given a list that contained integers and asked to 
find if three sevens in a row appeared. The largest group of 
students (34%) looped through the list by position, which 
allowed them to check the value at the corresponding index in 
the list and the following two values. However, the next largest 
group instead used a more complex reasoning structure to count 
the number of consecutive 7s encountered so far and reset it 
when a non-7 digit was encountered. This mirrored the 
preference for using for loops without the range function noted 
in the analysis of strings. Still others, interestingly, joined the list 
into a string and searched for “777” or took other more 
innovative approaches. 

The third trend is that students struggled to use efficient 
code, particularly regarding the return in functions. In one 
question, students were asked to define a function which took 
two parameters, a list of answers, and a list of the answer key, 
and to compare the answers to the key. However, there was the 
possibility that the answer list and the key list were of different 
lengths; students were instructed to return -1 in that instance. 
Students did so correctly, but many set a variable equal to -1 



 

then returned the variable, mirroring in part the pbservation 
earlier regarding a reluctance of some students to return an 
expression’s result directly. Others even defined a variable equal 
to the string “-1”, then converted the string to integer, then 
returned the integer. In another question, students were asked to 
write a function that found a triangle’s hypotenuse and angle 
based on three parameters, the opposite and adjacent lengths of 
the triangle and a boolean that determined whether to use 
degrees or radians. Many students did so efficiently, but some 
took a longer approach, where they would set variables equal to 
what they wanted to return, then returned those variables. 

4.6 File Input/Output 
The 16th chapter of the course covered File Input and Output. 

For this chapter, the problem set contained ten problems. 
Evaluating these problems, we discovered two interesting trends. 

First, while the course material covers a few different ways to 
read files, students appear to prefer to iterate over the open file. 
On a problem that requires students to simply read lines from a 
file and store them as tuples, 63% chose to use for line in 
file instead of methods like read() and readlines(). 
While there is nothing inherently wrong with that approach for 
this problem, it is somewhat more limiting in what can be done 
with it, and this limiting factor is seen arising in later problems 
where students need to re-read the file more than once. Upon 
reaching these problems, most students stick to this approach 
even though it demands more convoluted logic, like closing and 
reopening the file. 

Second, regarding closing files, most students closed files at 
the end of the function rather than as soon as file-reading had 
completed. One problem, for example, had 82% of students 
closing a file as the last line of code, even though they only used 
the file at the very beginning of the code. For many of these 
students, closing the file actually took place after the return 
statement, meaning that the file was never actually closed. 

4.7 Dictionaries 
The 17th chapter of the course covered dictionaries. This 

chapter had twelve coding problems and three advanced coding 
problems in the problem set. Three trends stuck out to us in this 
chapter: the use of for loops and nested for loops in place of 
populating a dictionary more directly, the use of lists to avoid 
using dictionaries directly, and the use of try and except. 

While most students took understandable approaches, the 
first trend we observed was that a non-trivial number of 
students took one of several approaches that effectively 
bypassed using dictionaries as they were constructed to be used. 
For example, one problem asked students to write a function to 
take a string and return an integer:list dictionary, where the keys 
were word lengths and the values were lists of words with the 
corresponding length. Some students took approaches like 
iterating through the keys to find the right key before appending 
to the list rather than just looking up the key directly. 

Second, some students—presumably more comfortable 
working with lists from the previous chapter—unpacked 

dictionaries into lists for processing. These students appeared to 
believe that dictionaries were effectively two disjoined lists 
rather than understanding that keys actually point to values in 
the dictionary. These students thus did not grasp that an easier 
way to populate a dictionary would have been to use the key to 
modify the values, and instead they would create a list and then 
use indexing to make a key variable. Often, they would then use 
a two-dimensional list and nested for loops for the values.  

Third, we found an interesting carry over from the chapter 
on error handling. On the one hand, we found a non-trivial 
number of students who, rather than handling edge cases 
deliberately, assumed the code would operate correctly and 
caught errors if they arose. This reflected a mature 
understanding of the role error handling could play. However, 
another non-trivial set of students appeared to use try and 
except blocks more haphazardly. These students included error-
handling code that did not actually react to errors; they also 
wrapped try blocks around code that would not generate errors 
in the context of the problem. Still others used no error handling 
code and were forced to handle potential problems more 
deliberately by, for example, preemptively checking if values 
were the right types for subsequent operations. 

5 Content Modifications 
As noted above, most prior research using tools like Sense 

has focused on delivering students individualized feedback based 
on their answer patterns. This is a highly desirable goal and not 
in conflict with our approach; however, we also note that by 
delivering this feedback only to students who commit the error, 
we risk excluding students who possess the underlying 
misconception but never demonstrate it in their work. For 
example, we noted above that in the chapter on functions, many 
students have an unnecessary structural component of their 
code, like a statement merely saying else: pass. This 
suggests either a misconception that every if must have an 
else, or an undesirable stylistic preference to have an else for 
every if. To resolve this, we authored additional content 
deliberately exploring whether an else is required for every 
if, in order to ensure that a correct understanding is reinforced 
for every student. 

A number of similar modifications have either been made or 
are planned for the near future based specifically on the 
outcomes of this analysis. These include: 

 Authoring exercises on the readability of long formulas. 
 Authoring exercises reinforcing the ability and desirability 

of returning the results of simple expressions directly. 
 Authoring additional content regarding available functions 

like range and sum, and embedded reminders on 
appropriate times to use these functions. 

 Authoring additional instructional material on the 
situations under which using string.find() or 
string.index() will fail, and alternatives to avoid 
needing those method calls in the first place. 

 Moving content requiring students to process the result of 
calling string.split() into the chapter on lists. 



 

 

 Revising the autograder to more intelligently assess 
whether a file has been closed. 

 Authoring additional content regarding the scope of file 
reading and the benefits of closing a file as soon as its 
contents have been read into the program. 

 Author additional content regarding the scope of variables 
in a function, specifically targeting inadvertently accessing 
variables from outside the function rather than the 
function’s own parameters. 

 Authoring additional content regarding the usefulness of 
dictionaries rather than just syntax for using dictionaries. 

 Authoring content guiding students on how to understand 
whether error handling code is necessary rather than 
merely the structure of error handling code. 

6 Conclusion 
Significant work has been done, both in CS education and in 

education more broadly, on clustering student answers to 
support individualized feedback. However, most of this research 
has stopped there in its application of these clustering 
techniques. Once clustered, however, there are significant 
additional improvements that can be made to course content 
based on the knowledge gained from this analysis. 

In this work, we have demonstrated one such approach to 
using the results of a sophisticated code-clustering algorithm to 
inform the revision of the course content itself. We uploaded 
over 14,000 student code submissions to the clustering system 
spanning 70 different exercises. We then used the results to 
inform general revisions to the content to specifically target the 
common misconceptions and errors observed in the results of 
that analysis. 

We do not claim that this approach is generally superior or 
preferable to using clustering for tailored feedback, but we do 
argue that using clustering to inform more broad content 
revision has additional benefits. Modifying the course content 
itself removes the reliance that every student demonstrates 
every misconception they hold in their work. Tailored feedback 
is excellent for giving individualized and just-in-time correction, 
but it may miss students who for one reason or another never 
demonstrate the need for that correction. Revising the material 
more broadly targets them as well, and it reinforces the correct 
conception among students who may not have misconceptions 
but are not firm in their correct conceptions. 

We have not performed a systematic analysis of the change 
in student behavior based on these changes, but anecdotally we 
have noticed significant changes. One prominent change 
occurred in response to new content targeting variable scope 
and functions: we noted a significant drop in the number of 
questions from students who did not realize that their functions 
were looking at variables defined outside the function rather 
than variables passed in through the parameter list. This 
reflected to us the value in targeting content specifically to the 
misconceptions and errors observed through clustering analyses 
like these. 

 

6.1 Limitations 
The results from our specific analyses listed in this research 

likely are not generalizable out to other classes as well. Student 
patterns in our class are driven by our own instructional 
material, and different approaches will lead to different patterns. 
This research is a demonstration of the use of code clustering in 
rather than a list of common errors and misconceptions in CS1. 

That said, the technology used in these analyses may be used 
for research on common errors. If a shared set of problems is 
distributed and used across multiple classes, then a clustering 
analysis may identify what errors are specific to individual 
instructional styles and what errors are more inherent to the 
content. Such a shared corpus of exercises would be valuable in 
assessing what is inherently difficult about programming. 

6.2 Future Work 
Others have looked at using clustering for tailoring feedback 

or detecting plagiarism, and we have looked at using clustering 
for revising content. There are significant other potential 
applications of submission clustering that we plan to explore as 
well. First, this clustering may also serve as a valuable research 
tool, both for broader CS education research and in evaluating 
other improvements made to the class. The changes documented 
here targeted specific desired changes in the patterns of 
students’ answers on the problem sets. Follow-up analyses of 
future semesters’ submissions may allow us to establish the 
effectiveness of those changes. 

Second, on our preliminary research, we have observed that 
there are some clusters of students that appear to group together 
across multiple assignments. This is unsurprising on those 
problems where the majority of students tend to take the same 
approach, but it is curious to note instances where the same 
small group of students takes the same unorthodox approach 
across multiple exercises. Are they a study group who happens 
to arrive at the same ideas together? Are they a group of people 
with a particular background that causes them to favor some 
answers over others? Are they a circle of people copying 
answers from one another? The usage of clustering to track 
groups of people across problems has significant potential. 

Third, clustering may also be used to foster greater social 
connectedness in a class, an approach that could be particularly 
relevant for students in an asynchronous online class or MOOC. 
For example, one can imagine that upon submitting an answer, a 
clustering system finds the similar answers from previous 
submissions and alerts the student, “Your approach to the 
problem is similar to 72% of prior individuals! Would you like to 
see some of the approaches the other 28% take?” In addition to 
some of the benefits of tailoring the selection of alternate 
examples to the individual’s own approach, this may also help 
the student contextualize their own meta-knowledge and 
establish if they are adopting common behaviors. 
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