
From Clusters to Content:
Using Code Clustering for Course Improvement

David A. Joyner
College of Computing

Georgia Institute of Technology
Atlanta, GA USA

david.joyner@gatech.edu

Evi Salguero
 College of Computing

Georgia Institute of Technology
Atlanta, GA USA

esalguero3@gatech.edu

Ryan Arrison
 College of Computing

Georgia Institute of Technology
Atlanta, GA USA

rarrison@gatech.edu

Zida Wang
 College of Computing

Georgia Institute of Technology
Atlanta, GA USA

zwang795@gatech.edu

Kevin Yin
 College of Computing

Georgia Institute of Technology
Atlanta, GA USA
kyi@gatech.edu

Mehnaz Ruksana
 College of Computing

Georgia Institute of Technology
Atlanta, GA USA

mehnazruksana@gatech.edu

Ben Wellington
 College of Computing

Georgia Institute of Technology
Atlanta, GA USA

bwellington3@gatech.edu

ABSTRACT
Large undergraduate CS courses receive thousands of code
submissions per term. To help make sense of the large quantities
of submissions, projects have emerged to dynamically cluster
student submissions by approach for writing scalable feedback,
tailoring hints, and conducting research. However, relatively
little attention has been paid to the value of these tools for
informing revision to core course materials and delivery
methods. In this work, we applied one such technology—Sense,
the eponymous product of its company—to an online CS1 class
delivered simultaneously for credit to on-campus students and
for free to MOOC students. Using Sense, we clustered student
submissions to around 70 problems used throughout the course.
In this work, we discuss the value of such clustering, the
surprising trends we discovered through this process, and the
changes made or planned to the course based on the results. We
also discuss broader ideas on injecting clustering results into
course design.

ACM Reference format
David A. Joyner, Ryan Arrison, Mehnaz Ruksana, Evi Salguero, Zida
Wang, Ben Wellington, and Kevin Yin. 2019. From Clusters to Content:
Using Code Clustering for Course Improvement. In Proceedings of 50th
ACM Technical Symposium on Computer Science Education (SIGCSE ‘19),
February 27-March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3287324.3287459

1 Introduction
One characteristic of large computer science courses is the

presence of numerous different solutions to coding problems
posed on homework assignments and tests. These solutions exist
at an interesting intersection of more mathematical problems
and more freeform problems: like mathematical problems, there
exist objective criteria for correctness, but like essays or short-
answers, there is a nearly infinite number of ways to approach
the problems correctly. Many of these different approaches may
have superficial differences like differing variable names, but
deeper similarity in their underlying structure and behavior [9].

CS educators need to be able to understand the breadth of
student answers to inform their own teaching and to deliver
appropriate feedback to the right students. However, manually
coding student submissions for the type of approach taken is an
arduous process, and the work involved grows linearly with
scale. Efforts in other areas have been made to cluster student
solutions for more efficient feedback and evaluation [1][15][22],
but CS education has a unique opportunity due to the
simulatability and underlying objective similarity between
students’ answers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA
©2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-5890-3/19/02…$15.00
https://doi.org/10.1145/3287324.3287459

To address this, multiple initiatives have arisen to perform
this processing automatically (e.g. [5]). Most prior research,
however, has focused on the mechanics of these systems rather
than their use as a tool for researching patterns of student
submissions and using those patterns to inform content
revisions, tailored feedback, or new initiatives. In this research,
we put one such system—Sense, the eponymous name of the
company that developed it—to work in an online CS1 class. We
begin by giving a brief background of the course in which the
tool is used, and then provide a deeper look at some of the
results that were uncovered through this analysis. We do not
claim that these results reflect general trends in CS1 as we can
only generalize to our instruction and delivery style, but rather
they are emblematic of the kinds of analysis and results that can
be generated using clustering tools such as Sense. Then, we
discuss the immediate revisions made and planned for the course
based on these results, as well as some more ambitious proposals
for integrating content clustering more directly into the student-
facing course experience. This analysis and results together
demonstrate the potential power of using code clustering tools
for course content improvement.

2 Related Work
Significant work has been performed on clustering student

responses based on similarity, both in computer science
education and in education more broadly. Tools like GradeScope
[22], Powergrading [1], and Mathematical Language Processing
[13] address this issue in short answer or open math problems
by first clustering student submissions together, then mapping
those to tailored feedback. GradeScope in particular uses these
clusters for emergent rubrics where instructors can modify point
deductions for individual errors and have those modifications
propagate to all student assignments present in similar clusters.
More commonly, work has also been done for constructing
expert systems with in-built knowledge of common error types
[10][11].

More specifically within computer science education,
OverCode [5] and other tools [18][19] address the same need by
clustering and visualizing student responses to coding problems.
Other work has been performed to generate formative feedback
for students based on error models [11][12][24], match
prewritten code feedback to new submissions [7][14][17], or
identify the differences between new submissions and working
submissions for tailored feedback [6][16][21][25][26][27].

Similar work has been done with different goals as well.
Much of the early work on clustering student code submissions
used abstract syntax trees to evaluate the likelihood that code
plagiarism had taken place [20], a technique that has since been
extended to educational environments [2][8].

Notably, however, despite the massive number of initiatives
in this area, the significant focus has been on delivering
individual feedback to the student. While this is without
question a valuable goal, it is not the only relevant application of
these technologies. Rather than relying on the system to deliver
content feedback directly to students, it is also possible that
systems like these could instead give instructors information

about student patterns of interaction to be used in modifying the
content itself.

3 Course Background
This analysis took place as part of the delivery of an online

CS1 class. The class is simultaneously offered as a for-credit class
at a major public research university in the United States and as
a set of Massive Open Online Courses (MOOCs) to the public on
the edX platform. Since its inception in January 2017, 785
students have taken the class for credit, and nearly 1,673 have
completed a public offering of the course as a MOOC. The class
teaches Python 3 and presupposes no prior CS knowledge; it is
intended as the first class that new CS majors take and also
fulfills the CS requirement for all majors at the university.

The analysis here more narrowly targeted for-credit students’
responses from two consecutive semesters (approximately 350
total students) as the goal was to specifically revise the course
content for the patterns present among these for-credit students.

As part of the course experience, students complete
approximately 350 programming problems. These problems
come in three forms: exercises, which are interspersed between
short video lectures; problems, which are collected into problem
sets at the end of each course chapter; and tests, which are
delivered as part of timed and digitally proctored assessments. In
all three types of problems, students use a web-based
programming interface that generates immediate feedback and
evaluation on the correctness of their responses. A limited hint
generation system is built in based on an expert system
monitoring for the occurrence of certain code or output errors,
but most evaluation takes place based on a comparison of
student code output to the output of a correct answer to the
same prompt.

4 Clustering Results
For this analysis, we used Sense to cluster student responses

to every problem on each of six of the course’s problem sets.
Each problem set is topic-specific: these six sets covered
functions, error handling, strings, lists, file I/O, and dictionaries.
Prior to these problem sets, students learn loops, conditionals,
and operators, and so those concepts exist in their responses to
these questions as well. It is important to note that the goal of
this work is not to demonstrate a list of common errors and
misconceptions in CS1 in general, but rather to show how
clustering analyses can be used to uncover such patterns within
specific courses with minimal effort.

4.1 Clustering Example: The Rainfall Problem
The sections below cover the high-level trends uncovered in

each problem set, but to understand these results, it is useful to
first look more deeply at the analysis of a single problem. One
problem outside these problem sets that we evaluated was a
variation on the famous [4] Rainfall problem [23], which was
offered during the third timed and proctored test in the course.
Due to technical constraints, rather than have students
repeatedly get another piece of user input, our variation supplied
students with a list of observed rainfall values as integers, into

which -1 was inserted somewhere after the first digit. Students
were asked to average and return all integers before -1. Most
students answered the problem correctly (184 out of 190 who
attempted it in one semester), although we questioned whether
the modifications made to read from a list instead of from user
input fundamentally changed the difficulty of the problem.

To answer this question, we uploaded student submissions to
Sense. We found first of all that the vast majority of students
opted to use a for loop: only 4% of all student submissions used a
while loop, which is the method that would more similarly
match the traditional framing of the Rainfall problem. 67% of the
submissions used a for loop, but broke the loop (either by calling
break or by returning from within the loop) once it
encountered a -1. So, while only 4% of students used a loop
definition that would work for the traditional rainfall problem,
71% had a loop body that would generally work for the
traditional problem.

Among the remaining 29% of responses, we observed some
additional interesting variation. 8% of submissions first modified
the list to remove all values after -1, either with the del
command or by slicing the list until the first instance of -1, found
through use of the list.find() or list.index()
methods. They then averaged the remaining list, some with a for
loop and some by calling sum(list)/len(list).
Interestingly, the sum function is not covered in the course
material. An additional 8% of students took a similar approach,
but without using the find() or index() method. They
initially looped over the list to find the index of -1, then either
sliced the list or looped over the list again until that index. While
not common, this reflected to us the need to reemphasize list
slicing and indexing, which previously had been relegated
primarily to a callback to the chapter on strings.

Among the remaining 13% of responses, some entirely unique
observations were observed; some were particularly
sophisticated, while some were particularly suboptimal. On the
sophisticated side, one student wrote two functions: one to
average any list, and one to call that function on the list sliced up
until the index of -1; another student completed the problem in a
single line. These sophisticated responses were fruitful to share
with students as exemplary answers. On the suboptimal side,
one student generated an entirely new list and added values to it
until -1 was reached; another student used nested for-loops to
re-find the index of -1 for every value in the list.

This analysis was performed for every one of the 70 problems
across the six problem sets. The sections below summarize the
interesting trends observed across the problems that we
analyzed.

4.2 Functions
The 11th chapter of the course covered functions. For this

chapter, the problem set contained twelve problems. Evaluating
these problems, we discovered three primary trends.

First, we found that most students’ submissions contain some
unnecessary structural component, such as an else statement in
which nothing really happens like adding zero to a count. For
example, one problem asked students to check whether or not a

string contained a series of three sevens. We found that 7% of
students created an else block in which they either added zero to
their count or used the keyword continue. This also occurred in
another problem which asked students to find the average word
length from a string. 26% of students used pass or “reassigned” a
variable without changing its value, or added zero to their count.

Second, we found that when using a formula, students often
do their calculations in one or two long lines rather than
breaking it up into parts. For example, one problem asked
students to calculate the damage a Pokemon would face based on
various parameters such as type and level. In this problem,
though a lengthy formula was involved, only 27% of students
broke their calculations into several parts. Another problem
asked students to determine whether a given year was a leap
year. We found that 17% of students did their calculations all in
one line.

Third, we found that students would sometimes use brute
force rather than built in functions or functions of their own. For
example, one problem asked the students to make a countdown
given the range of numbers. Instead of using Python’s range
function and a loop, 11% of students manually printed each
number in the countdown. In another problem, students were
asked to find the average word length given a string. This
problem required the students to make three functions, one for
word count, one for letter count, and one for average word
length. To calculate letter count, students could use their word
count function since this accounts for the number of characters
that are not letters (spaces) but only 5% did while others
recalculated the number of spaces.

4.3 Error Handling
The 12th chapter of the course covered error handling. For

this chapter, the problem set contained eight coding problems.
Evaluating these problems, we found two primary trends.

The first trend is that as exercises rose in complexity,
students demonstrated a stronger tendency to store the result of
an expression into a variable prior to printing it, even if printing
it was the only remaining task to be performed with the result of
the expression. One early problem asked students to attempt up
to three calculations, the first two of which could cause an error.
48% of students printed the expressions’ results directly, while
43% attempted the expression, stored its result in a variable, and
then printed it if an error had not arisen.

Two problems later, students were asked to find pressure
given other values using the expression PV = nRT. Here, 71% of
students stored the result of an expression in a variable, then
later returned it. Only 22% returned the result directly, even
though this approach led to fewer lines of code and a more
straightforward algorithm.

Secondly, in this chapter, students were able to individually
formulate their own algorithms and approaches to more
challenging coding prompts. In one later problem, students were
asked to write a word count function that could correctly ignore
consecutive spaces. 42% of students used a “forward-checking”
algorithm, where when encountering a space, the function
would check the next character in the string before incrementing

the word count. 18% instead implemented a “backwards-check”
algorithm with a boolean variable that tracked whether the
previous character was a space. The following problem expanded
on this prompt and saw even more significant differentiation: 57
clusters of unique solutions were observed in the next problem,
which removed the assumption that the string would start with a
word and required students to take special steps in the event of
strings with all punctuation marks or no characters.

4.4 Strings
The 14th chapter of the course covers strings, including

indexing, splicing, and their context as a data structure. This
chapter included a total of fourteen coding problems, the first
eight intended for all students and the last six handling more
advanced concepts. Two of the most prominent patterns
included the use of the .find() method as opposed to a range
for-loop and a common tendency for the len() function to
cause an index error, and misunderstanding the difference
between strings and lists of strings.

First, as students gain more and more experience using
Python and for-loops, they ought to realize that using for i
in range() is advantageous because each iteration grants
both the index and the piece of data through indexing brackets.
However, many students in this chapter opted to use a for-each
loop on their strings, utilizing the .find() method to retrieve
the index of their values. This approach is suboptimal, however:
even when it works, it is more complex and computationally
intensive, and it also fails whenever the string has the same
character multiple times.

Second, it is common in Python to use the length of a string
as a parameter in the range() function, such as for i in
range(len(string)). In this case, the range begins at zero
and ends with len(string)-1, as upper bounds are
exclusive. However, that upper bound is invisible to students;
thus, when they attempt to use the upper bound outside of a
loop, they tend to use len(string). When Python encounters
this, it will throw an index error because the loop tries to iterate
past the length of the string.

Third, the chapter teaches students the split() method,
which splits a string into a list of strings; however, students do
not cover lists until the next chapter. Thus, there are several
instances where students treat the output of splitting a string as
a string itself, such as trying to call upper() on the entire list.

4.5 Lists
The 15th chapter of the course introduced the topic of lists in

Python. For this chapter, the problem set contained seven coding
problems and four advanced coding problems. Evaluating these
problems, we discovered three primary trends.

The first major trend is that students very much preferred to
use if statements vs if-else statements. In one question, students
were asked to find names that appeared in one list but not
another. Most (78%) students created an empty list, then ran a
for loop through the first list of names with a nested if-
conditional that checked if the name in the first list was not in

second. If that was true, they append that name to the empty list,
and return that list at the end of the function. A smaller subset of
students (10%) used the same process, with the exception being
the nested if-conditional. They instead used an if-else
conditional, where the if-statement determined if the name on
the first list was in the second list. If it was, then pass; else,
append that name to the empty list. This method was far less
common and the code was longer than it could be, but it
remained valid. Notably, this countered an earlier trend where
students included structurally unnecessary elements in their
code; it appears that as the course moves on, students develop
more of a comfort with this abbreviated representation and
fewer include unnecessary components. Similarly, in another
question, students were asked to write a function that takes in a
a list of integers and to find the average of all the integers
greater than 100. The most common method (63%) was to create
a variable and a counter both equal to zero, then loop through
the list. A nested if-conditional would then check if the integer
was greater than 100. If it was, then it was added to the sum and
1 was added to the counter; at the end, the average was returned.
As before, there was a small group of students (21%) who used
an else as well, typically with pass or continue as the only
body of the else block.

The second trend is that students tended to understand, and
even over-rely, on some list functions like indexing, appending,
sorting, and iteration. In one problem, students were asked to
find the movie with the highest sales from a list of tuples, each of
which contained the movie title and the total ticket sales. Most
students (51%) used a for loop to implement a typical linear
search, looping through each tuple and analyzing the second
index of the tuple. From there they found the maximum sale and
returned the movie name. A smaller but significant group of
students (19%) created an empty list, added all the sales to the
new list, and then used the sort() method or max() function
to get the highest gross. They then used another linear search to
find which movie corresponded to that sale. In another question,
students were given a list that contained integers and asked to
find if three sevens in a row appeared. The largest group of
students (34%) looped through the list by position, which
allowed them to check the value at the corresponding index in
the list and the following two values. However, the next largest
group instead used a more complex reasoning structure to count
the number of consecutive 7s encountered so far and reset it
when a non-7 digit was encountered. This mirrored the
preference for using for loops without the range function noted
in the analysis of strings. Still others, interestingly, joined the list
into a string and searched for “777” or took other more
innovative approaches.

The third trend is that students struggled to use efficient
code, particularly regarding the return in functions. In one
question, students were asked to define a function which took
two parameters, a list of answers, and a list of the answer key,
and to compare the answers to the key. However, there was the
possibility that the answer list and the key list were of different
lengths; students were instructed to return -1 in that instance.
Students did so correctly, but many set a variable equal to -1

then returned the variable, mirroring in part the pbservation
earlier regarding a reluctance of some students to return an
expression’s result directly. Others even defined a variable equal
to the string “-1”, then converted the string to integer, then
returned the integer. In another question, students were asked to
write a function that found a triangle’s hypotenuse and angle
based on three parameters, the opposite and adjacent lengths of
the triangle and a boolean that determined whether to use
degrees or radians. Many students did so efficiently, but some
took a longer approach, where they would set variables equal to
what they wanted to return, then returned those variables.

4.6 File Input/Output
The 16th chapter of the course covered File Input and Output.

For this chapter, the problem set contained ten problems.
Evaluating these problems, we discovered two interesting trends.

First, while the course material covers a few different ways to
read files, students appear to prefer to iterate over the open file.
On a problem that requires students to simply read lines from a
file and store them as tuples, 63% chose to use for line in
file instead of methods like read() and readlines().
While there is nothing inherently wrong with that approach for
this problem, it is somewhat more limiting in what can be done
with it, and this limiting factor is seen arising in later problems
where students need to re-read the file more than once. Upon
reaching these problems, most students stick to this approach
even though it demands more convoluted logic, like closing and
reopening the file.

Second, regarding closing files, most students closed files at
the end of the function rather than as soon as file-reading had
completed. One problem, for example, had 82% of students
closing a file as the last line of code, even though they only used
the file at the very beginning of the code. For many of these
students, closing the file actually took place after the return
statement, meaning that the file was never actually closed.

4.7 Dictionaries
The 17th chapter of the course covered dictionaries. This

chapter had twelve coding problems and three advanced coding
problems in the problem set. Three trends stuck out to us in this
chapter: the use of for loops and nested for loops in place of
populating a dictionary more directly, the use of lists to avoid
using dictionaries directly, and the use of try and except.

While most students took understandable approaches, the
first trend we observed was that a non-trivial number of
students took one of several approaches that effectively
bypassed using dictionaries as they were constructed to be used.
For example, one problem asked students to write a function to
take a string and return an integer:list dictionary, where the keys
were word lengths and the values were lists of words with the
corresponding length. Some students took approaches like
iterating through the keys to find the right key before appending
to the list rather than just looking up the key directly.

Second, some students—presumably more comfortable
working with lists from the previous chapter—unpacked

dictionaries into lists for processing. These students appeared to
believe that dictionaries were effectively two disjoined lists
rather than understanding that keys actually point to values in
the dictionary. These students thus did not grasp that an easier
way to populate a dictionary would have been to use the key to
modify the values, and instead they would create a list and then
use indexing to make a key variable. Often, they would then use
a two-dimensional list and nested for loops for the values.

Third, we found an interesting carry over from the chapter
on error handling. On the one hand, we found a non-trivial
number of students who, rather than handling edge cases
deliberately, assumed the code would operate correctly and
caught errors if they arose. This reflected a mature
understanding of the role error handling could play. However,
another non-trivial set of students appeared to use try and
except blocks more haphazardly. These students included error-
handling code that did not actually react to errors; they also
wrapped try blocks around code that would not generate errors
in the context of the problem. Still others used no error handling
code and were forced to handle potential problems more
deliberately by, for example, preemptively checking if values
were the right types for subsequent operations.

5 Content Modifications
As noted above, most prior research using tools like Sense

has focused on delivering students individualized feedback based
on their answer patterns. This is a highly desirable goal and not
in conflict with our approach; however, we also note that by
delivering this feedback only to students who commit the error,
we risk excluding students who possess the underlying
misconception but never demonstrate it in their work. For
example, we noted above that in the chapter on functions, many
students have an unnecessary structural component of their
code, like a statement merely saying else: pass. This
suggests either a misconception that every if must have an
else, or an undesirable stylistic preference to have an else for
every if. To resolve this, we authored additional content
deliberately exploring whether an else is required for every
if, in order to ensure that a correct understanding is reinforced
for every student.

A number of similar modifications have either been made or
are planned for the near future based specifically on the
outcomes of this analysis. These include:

 Authoring exercises on the readability of long formulas.
 Authoring exercises reinforcing the ability and desirability

of returning the results of simple expressions directly.
 Authoring additional content regarding available functions

like range and sum, and embedded reminders on
appropriate times to use these functions.

 Authoring additional instructional material on the
situations under which using string.find() or
string.index() will fail, and alternatives to avoid
needing those method calls in the first place.

 Moving content requiring students to process the result of
calling string.split() into the chapter on lists.

 Revising the autograder to more intelligently assess
whether a file has been closed.

 Authoring additional content regarding the scope of file
reading and the benefits of closing a file as soon as its
contents have been read into the program.

 Author additional content regarding the scope of variables
in a function, specifically targeting inadvertently accessing
variables from outside the function rather than the
function’s own parameters.

 Authoring additional content regarding the usefulness of
dictionaries rather than just syntax for using dictionaries.

 Authoring content guiding students on how to understand
whether error handling code is necessary rather than
merely the structure of error handling code.

6 Conclusion
Significant work has been done, both in CS education and in

education more broadly, on clustering student answers to
support individualized feedback. However, most of this research
has stopped there in its application of these clustering
techniques. Once clustered, however, there are significant
additional improvements that can be made to course content
based on the knowledge gained from this analysis.

In this work, we have demonstrated one such approach to
using the results of a sophisticated code-clustering algorithm to
inform the revision of the course content itself. We uploaded
over 14,000 student code submissions to the clustering system
spanning 70 different exercises. We then used the results to
inform general revisions to the content to specifically target the
common misconceptions and errors observed in the results of
that analysis.

We do not claim that this approach is generally superior or
preferable to using clustering for tailored feedback, but we do
argue that using clustering to inform more broad content
revision has additional benefits. Modifying the course content
itself removes the reliance that every student demonstrates
every misconception they hold in their work. Tailored feedback
is excellent for giving individualized and just-in-time correction,
but it may miss students who for one reason or another never
demonstrate the need for that correction. Revising the material
more broadly targets them as well, and it reinforces the correct
conception among students who may not have misconceptions
but are not firm in their correct conceptions.

We have not performed a systematic analysis of the change
in student behavior based on these changes, but anecdotally we
have noticed significant changes. One prominent change
occurred in response to new content targeting variable scope
and functions: we noted a significant drop in the number of
questions from students who did not realize that their functions
were looking at variables defined outside the function rather
than variables passed in through the parameter list. This
reflected to us the value in targeting content specifically to the
misconceptions and errors observed through clustering analyses
like these.

6.1 Limitations
The results from our specific analyses listed in this research

likely are not generalizable out to other classes as well. Student
patterns in our class are driven by our own instructional
material, and different approaches will lead to different patterns.
This research is a demonstration of the use of code clustering in
rather than a list of common errors and misconceptions in CS1.

That said, the technology used in these analyses may be used
for research on common errors. If a shared set of problems is
distributed and used across multiple classes, then a clustering
analysis may identify what errors are specific to individual
instructional styles and what errors are more inherent to the
content. Such a shared corpus of exercises would be valuable in
assessing what is inherently difficult about programming.

6.2 Future Work
Others have looked at using clustering for tailoring feedback

or detecting plagiarism, and we have looked at using clustering
for revising content. There are significant other potential
applications of submission clustering that we plan to explore as
well. First, this clustering may also serve as a valuable research
tool, both for broader CS education research and in evaluating
other improvements made to the class. The changes documented
here targeted specific desired changes in the patterns of
students’ answers on the problem sets. Follow-up analyses of
future semesters’ submissions may allow us to establish the
effectiveness of those changes.

Second, on our preliminary research, we have observed that
there are some clusters of students that appear to group together
across multiple assignments. This is unsurprising on those
problems where the majority of students tend to take the same
approach, but it is curious to note instances where the same
small group of students takes the same unorthodox approach
across multiple exercises. Are they a study group who happens
to arrive at the same ideas together? Are they a group of people
with a particular background that causes them to favor some
answers over others? Are they a circle of people copying
answers from one another? The usage of clustering to track
groups of people across problems has significant potential.

Third, clustering may also be used to foster greater social
connectedness in a class, an approach that could be particularly
relevant for students in an asynchronous online class or MOOC.
For example, one can imagine that upon submitting an answer, a
clustering system finds the similar answers from previous
submissions and alerts the student, “Your approach to the
problem is similar to 72% of prior individuals! Would you like to
see some of the approaches the other 28% take?” In addition to
some of the benefits of tailoring the selection of alternate
examples to the individual’s own approach, this may also help
the student contextualize their own meta-knowledge and
establish if they are adopting common behaviors.

REFERENCES
[1] Sumit Basu, Chuck Jacobs & Lucy Vanderwende (2013). Powergrading:

a clustering approach to amplify human effort for short answer
grading. Transactions of the Association for Computational Linguistics, 1,
391-402.

[2] Sébastien Combéfis & Arnaud Schils (2016, November). Automatic
programming error class identification with code plagiarism-based
clustering. In Proceedings of the 2nd International Code Hunt Workshop
on Educational Software Engineering, 1-6. ACM.

[3] Molly Q. Feldman, Ji Yong Cho, Monica Ong, Sumit Gulwani, Zoran
Popović, and Erik Andersen. Automatic Diagnosis of Students'
Misconceptions in K-8 Mathematics. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, 264. ACM.

[4] Kathi Fisler. (2014, July). The recurring rainfall problem. In Proceedings
of the Tenth Annual Conference on International Computing Education
Research, 35-42. ACM.

[5] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and
Robert C. Miller. (2015). OverCode: Visualizing variation in student
solutions to programming problems at scale. ACM Transactions on
Computer-Human Interaction (TOCHI), 22(2), 7.

[6] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. (2018, June).
Automated clustering and program repair for introductory
programming assignments. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(pp. 465-480). ACM.

[7] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas
Figueredo, Loris D'Antoni, and Björn Hartmann. (2017, April). Writing
reusable code feedback at scale with mixed-initiative program
synthesis. In Proceedings of the Fourth (2017) ACM Conference on
Learning @ Scale, 89-98. ACM.

[8] David Hovemeyer, Arto Hellas, Andrew Petersen, and Jaime Spacco.
(2016, August). Control-flow-only abstract syntax trees for analyzing
students' programming progress. In Proceedings of the 2016 ACM
Conference on International Computing Education Research, 63-72. ACM.

[9] Jonathan Huang, Chris Piech, Andy Nguyen, and Leonidas Guibas.
(2013, June). Syntactic and functional variability of a million code
submissions in a machine learning MOOC. In AIED 2013 Workshops
Proceedings Volume, 25.

[10] Magdalena Jankowska, Colin Conrad, Jabez Harris, and Vlado Kešelj.
(2018). N-Gram Based Approach for Automatic Prediction of Essay
Rubric Marks. In Advances in Artificial Intelligence: 31st Canadian
Conference on Artificial Intelligence, Canadian AI 2018, Toronto, ON,
Canada, May 8–11, 2018, Proceedings 31, 298-303. Springer International
Publishing.

[11] David A. Joyner. (2018, June). Intelligent Evaluation and Feedback in
Support of a Credit-Bearing MOOC. In Proceedings of the 19th
International Conference on Artificial Intelligence in Education, 166-170.
Springer, Cham.

[12] Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit
Gulwani. (2016, November). Semi-supervised verified feedback
generation. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 739-750. ACM.

[13] Andrew S. Lan, Divyanshu Vats, Andrew E. Waters, and Richard G.
Baraniuk. (2015, March). Mathematical language processing:
Automatic grading and feedback for open response mathematical
questions. In Proceedings of the Second (2015) ACM Conference on
Learning @ Scale, 167-176. ACM.

[14] Victor J. Marin, Tobin Pereira, Srinivas Sridharan, and Carlos R.
Rivero. (2017, April). Automated personalized feedback in introductory
Java programming MOOCs. In Proceedings of the 2017 IEEE 33rd
International Conference on Data Engineering (ICDE), 1259-1270. IEEE.

[15] Agathe Merceron and Kalina Yacef. (2005). Clustering students to help
evaluate learning. In Technology Enhanced Learning, 31-42. Springer,
Boston, MA.

[16] Andy Nguyen, Christopher Piech, Jonathan Huang, and Leonidas
Guibas. (2014, April). Codewebs: scalable homework search for
massive open online programming courses. In Proceedings of the 23rd
International Conference on World Wide Web, 491-502. ACM.

[17] Sagar Parihar, Ziyaan Dadachanji, Praveen Kumar Singh, Rajdeep Das,
Amey Karkare, and Arnab Bhattacharya. (2017, June). Automatic
grading and feedback using program repair for introductory
programming courses. In Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science Education, 92-97. ACM.

[18] Ronen Tal-Botzer (2018). U.S. Patent Application No. 15/549,179.
[19] Lina F. Rosales-Castro, Laura A. Chaparro-Gutiérrez, Andrés F. Cruz-

Salinas, Felipe Restrepo-Calle, Jorge Camargo, and Fabio A. González.
(2016, November). An Interactive Tool to Support Student Assessment
in Programming Assignments. In Ibero-American Conference on
Artificial Intelligence, 404-414. Springer, Cham.

[20] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. (2003, June).
Winnowing: local algorithms for document fingerprinting. In
Proceedings of the 2003 ACM SIGMOD international conference on
Management of Data, 76-85. ACM.

[21] Saksham Sharma, Pallav Agarwal, Parv Mor, and Amey Karkare. (2018,
June). TipsC: tips and corrections for programming MOOCs. In
Proceedings of the 19th International Conference on Artificial Intelligence
in Education, 322-326. Springer, Cham.

[22] Arjun Singh, Sergey Karayev, Kevin Gutowski, and Pieter Abbeel.
(2017, April). Gradescope: a fast, flexible, and fair system for scalable
assessment of handwritten work. In Proceedings of the Fourth (2017)
ACM Conference on Learning @ Scale, 81-88. ACM.

[23] Eliot Soloway. (1986). Learning to program = learning to construct
mechanisms and explanations. Communications of the ACM, 29(9), 850-
858.

[24] Kristin Stephens-Martinez, An Ju, Krishna Parashar, Regina
Ongowarsito, Nikunj Jain, Sreesha Venkat, and Armando Fox. (2017,
August). Taking Advantage of Scale by Analyzing Frequent
Constructed-Response, Code Tracing Wrong Answers. In Proceedings
of the 2017 ACM Conference on International Computing Education
Research, 56-64. ACM.

[25] Ryo Suzuki, Gustavo Soares, Andrew Head, Elena Glassman, Ruan
Reis, Melina Mongiovi, Loris D'Antoni, and Bjoern Hartmann. (2017,
October). TraceDiff: Debugging unexpected code behavior using trace
divergences. In 2017 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), 107-115. IEEE.

[26] Ke Wang, Rishabh Singh, and Zhendong Su. (2018, June). Search, align,
and repair: data-driven feedback generation for introductory
programming exercises. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, 481-
495. ACM.

[27] Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and
Abhik Roychoudhury. (2017, August). A feasibility study of using
automated program repair for introductory programming assignments.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 740-751. ACM.

